Form Approved
REPORT DOCUMENTATION PAGE OMB No. 07040188

Pubhc repomng burden for mlx collacnon of information is ssnmaiad to averags 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and comgleting and
of i Send this burden sstimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for
Information Operauons and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
27 Oct 97

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
BEHAVIORAL RELATIONSHIPS BETWEEN SOFTWARE COMPONENTS

6. AUTHOR(S)
David S. Gibson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
The Ohio State University REPORT NUMBER
97-129D
8. SPONSORING/VONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

THE DEPARTMENT OF THE AIR FORCE
AFIT/CIA, BLDG 125

2950 P STREET

WPAFB OH 45433

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

g}

Bpp
‘l ;

13. ABSTRACT /Maximum 200 word's)

14. SUBJECT TERMS 15. NUMBER OF PAGES
/€]
16. PRICE CODE
17. SECURITY CLASSIFICATION 16, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT . DF THIS PAGE OF ABSTRACT

Standard Form ZSB:SRev 2-89) (EG)
Prescribed by ANSI 9.18
Dasigned using Parform Pro, WHS{DIOR, Oct 84

BEHAVIORAL RELATIONSHIPS BETWEEN
SOFTWARE COMPONENTS

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the

Graduate School of The Ohio State University
By

David S. Gibson, B.S., M.S.

* kK %k
The Ohio State University

1997

Dissertation Committee: Approved by

Professor Bruce W. Weide, Adviser

Professor Mary Jean Harrold
Adviser
Professor Timothy J. Long Department of Computer

and Information Science

19971031 011

ABSTRACT

Building software systems from reusable software components has been a goal
of software engineers for nearly three decades. Despite progress, the realization of
this goal remains surprisingly elusive. Expensive hardware systems such as aircraft,
communication networks, and factory assembly lines are designed so that various-
subsystems (both hardwaré and software) can be removed and replaced in order to

- change the performance and functionality of the overall system. In a similar manner,

it should be possible to change the behavior of a component-based software system
in useful and predictable ways by removing and replacing entire components.

In order to perform component-level maintenance, an engineer must understand
not only the structural relationships but also the behavioral relationships among the
component to be replaced, the system, and the replacement component. These behav-
ioral relationships need to be clearly documented and available to engineers developing
and maintaining component-based systems.

This dissertation presents a small set of precisely defined relationships that con-
cisely express behavioral relationships between software components. These rela-
tionships may be used to provide implementers and maintainers with useful infor-
mation about how components can and should be composed when integrated into
component-based systems. Furthermore, these relationships encourage strict adher-
ence to the well-established software engineering principles of modularity, information
hiding, polymorphism, and extendibility.

The relationships described are language-independent and may be encoded in a
variety of ways using modern programming languages. The dissertation describes
how interface-only components, templates, inheritance, and other language mecha-
nisms may be used to encode these relationships. Specific examples are provided in
RESOLVE/Ada95, a component-based software engineering discipline that uses Ada
as an implementation language.

il

To Elizabeth and Max

vV

Vi

ACKNOWLEDGMENTS

I thank the current and former members of the United States Air Force who
provided me with the opportunity and funding to pursue this degree for the past
three years. To my advisor, Bruce Weide, I offer my deepest gratitude. Without
his constant support, encouragement, enthusiasm, and good ideas, I would not have
achieved this goal. I am also grateful to my reading committee members, Mary Jean
Harrold and Tim Long, and to Bill Ogden for his many insightful suggestions.

I also thank Paolo Bucci and Rohit Goyal for their good friendship and encour-
agement over the past few years. I am especially grateful to my parents, John and
Donna Gibson, for encouraging and supporting me in so many ways. Finally, I thank
my wife, Cindy, for all of her love, tolerance, and help.

vil

viil

VITA
October 19, 1960oovviriiiiaanns Born — Dayton, Ohio.
1983 e B.S. Physics and Computer . Science,
Duke University
1986 .ot M.S. Computer and Information Sci-
ence, Trinity University, Texas
1983 - 1986 ..o Software Development Section Chief,

Air Force Electronic Warfare Center,
Kelly AFB, Texas

1986 - 1990 . .vvvei Secure Computer Systems Analyst and
Computer Security Special Applica-
tions Branch Chief, National Security
Agency, Fort Meade, Maryland

1990 - 1992 .. i Chief of Information Systems, Det. 4,
Air Force Operational Test and Evalu-
ation Center, Peterson AFB, Colorado

1992 - 1994 ... Instructor of Computer Science and
' Personnel Officer, Department of Com-
puter Science, United States Air Force

Academy, Colorado

1994 - present ... Ph.D. Student, The Ohio State Univer-
sity, Columbus, Ohio

PUBLICATIONS

Research Publications

David S. Gibson and Bruce W. Weide. “Semantic Spaces for Specifications and Tem-
plates.” Proceedings of The Workshop on Foundations of Component-Based Systems,
Zurich, Switzerland, 1997.

ix

Steven Ho Edwards. David S, Gibson. Brauee W, Weide. and Sergev Zhupanov. “Soft-
ware Component Relationships.”™ Procecdings of the 8th Annual Workshop on Soft-
ware Rewseo Colnmbns, Ohio, 1997,

David S, Gibson. An Introduction to RESOLVE/Ada95. Department of Computer
and Information Science. The Ohio State University, Columbus. Ohio. April 1997,
OSU-CISRC-1/97-TR23.

Timothy J. Long. Bruce W, Weide, Paolo Bucei. David S. Gibson. Murali Sitaraman.
and Stephen Ho Edwards. Providing Intellectual Focus to C'S1/C'S.2. Department
of Compnter and Information Science. The Ohio State University, Columbus. Ohio.
September 1997, OSU-CISRC-9/97-TR-12.

David S. Gibson. An Erpert System for Advising Trinity University Computing and
Information Scicnees Majors on Course Selection. Masters Thesis, Trinitv University.,
San Antonio. Texas. December 1986.

Instructional Publications

David S, Gibson. Instructional Materials For Computer Science 351 Computer Sys-
tem Organization. Department of Computer Science. The United States Air Foree
Academy. Colorado. December 1993,

David 8. Gibson. Tnstructional Materials For Computer Sceience 355 Computer Ap-

chitecture. Department of Computer Seience. The United States Air Foree Academy.
Colorado. NMav 1991,

FIELDS OF STUDY

Major Field: Computer And Information Science

Studies in:

Software Engineering Prof. Bruce W, Weide
Computer Architeeture Prof. Dhabaleswar Panda
Theory Prof. Kenneth J. Supowit

TABLE OF CONTENTS

|
|
|
|
‘ Page
Abstract L e e iii
Dedication e e e e v
Acknowledgments Lo vii
VIta . . . o e e e ix
List of Tables e XV
List of Figures xvii
% Chapters:
1. Imtroduction e e 1
1.1 The Problem 2
1.1.1 Component Dependency Relationships 2
1.1.2 Component Behavior oL 3
1.1.3 Behavioral Relationships 4
1.2 The Thesis e 5
1.3 Related Research 6
1.4 Organization 9

2. A Model of Behavioral Relationships Between Software Components . . . 11

2.1 Interchangeable Components 11
2.1.1 Component-Level Maintenance 11
2.1.2 The Role of Interface Specifications 13
2.1.3 Substitutabilityo o0 14

2.2 Components and Behavior 0oL 16

xi

Xil

Linplementation Components

o 1o 1o

2.1
2.2 Specification Components
2.3 Math Theory Modules .
221 Component Behavior .
Conformanee Relationships
9

3.1 Implementation-To-Specification (onformance .

2.3.2 Specification Fxtension

Dependeney Relationships .
211 Fixed Dependencies
2.12 Deferred Dependencies .
Chapter Summary

A Useful Set Of Software Component Relationships

OO0 Lo oLe
— e [-

Programming Language Support For Behavioral Relationships

4.1

1.2

Component Notation .

The uses Relationship .

The implements Relationship

The needs Relationship .
301 Implementation-Level needs
342 Specification-Level needs

383 Integration Dependencies Versus I)('swn D(p(‘ idencies

The extends Relationship .

3.5.1 Extension Components |

3.5.2 Implementing Extension Components
3.5.3 Extension Of Template Components

Behavioral Substitutability of Components .
Chapter Summary

Langnage Support for Component-Based Software Engineering .

.11 Modularity .

4.1.2 0 Information Hiding .

4.1.3 Polvmorphism

4.1.4 Extendibility C

Encoding The uses R(‘l(ltmnshlp

Encoding The implements Relationship . :
13.1 The implements Relationship and Conpling
1.3.2 Conformance Checking .

43.3 One-to-One Relationships

130 Many-to-One Relationships

435 Many-to-NMauy Relationships

—_
NolNes]

[EVI NV NI SV (]
-] lt 1y =

J oW W
o Z

39

39
41
45
49
50
56
61
63
61
68
D
81
82

000]
ot

85
86
87
89
90
91

4.4 Encoding The extends Relationships ST 105
4.5 Encoding The needs Relationship 108
4.6 Chapter Summary e 109
Behavioral Relationships in RESOLVE/Ada95 111
51 RESOLVE/Ada95 111
5.2 RESOLVE/Ada95 Abstract Components 113
5.3 The RESOLVE/Ada95 uses Relationship 117
5.4 The RESOLVE/Ada95 implements Relationship. 120
5.5 The RESOLVE/Ada95 needs Relationship 123
5.6 The RESOLVE/Ada95 extends Relationship 129
5.6.1 Abstract Extension Components 129

5.6.2 Implementation of Abstract Extension Components 132

5.7 Other RESOLVE/Ada95 Relationships 137
5.7.1 The RESOLVE/Ada95 specializes Relationship 137

5.7.2 The RESOLVE/Ada95 checks Relationship 140

5.8 Instantiation of RESOLVE/Ada95 Components 145.
5.9 RESOLVE/Ada95 Design Issues 148
5.9.1 Initialization of Built-in Scalars 150

5.9.2 Limitations of Child Units 151

5.10 Chapter SUMmMAry o v v v v v v et 152
Conclusion e 155
6.1 Summary and Conclusions 155
6.2 Contributions L L oo 156
6.3 Future Research 157
Bibliography 159

xiil

Niv

LIST OF TABLES

Table

2.1 Summary of Modeled Component Relations

3.1 Summary of Component Relationships

XV

NV

LIST OF FIGURES

Figure Page

2.1 Conformance and Requirement Relationships — Physical Components 15

2.2 Conformance and Requirement Relationships — Software Components 16

2.3 Components and Math Modules 18
2.4 Implementations, Specifications, and Behaviors 24
2.5 The imps Relation L. 26
2.6 Specification Conformance And Subsets L. 27
2.7 The exfs Relation 28 |
2.8 Concrete Instances Forming A Component-Based Sys’;em 31
2.9 Fixed and Deferred Dependencies 33
2.10 Concfete Templates And The Needs Relation 35
2.11 The Big Picture e e e 37
3.1 Abstract Instance AI_Fiipflop e 41
3.2 Concrete Instance CI_Flipflop-2 43
3.3 The uses Relationship 45
3.4 T‘He implements Relationship 46

xvii

3.5 Concrete Instance CI_Flipflop 3

3.6 Abstract Instance AT Threeway
3.7 Conerete Instance CI.Threeway 1
3.8 CT.Threeway.1 needs AI_Flipflop
3.9 CT_Threeway.1 needs AI_Flipflop
310 Abstract Template AT Stack
311 Conerete Template CT.Stack 1
3.12 The Behavioral Relationships of CT_Stack.1
313 Instantiation of CT_Stack 1

314 Three Views Of The Same Svstem . . . 0o oo
315 Abstract Instance AT FFEXt
316 Abstract Instance AT FFWSet
3.17 The extends Relationship Without and With Coupling
318 CI_FFWSet 1t A Direct Im])](*m(‘ntvati()n

319 CILFFWSet_2 A Coupled Implementation

w9
3]
=

CT.FFWSet_.3 A Lavered Implementation

Instantiation of Layered Extension Implementations

M)
[}
13V}

Three Wavs To Implement An Extension .. 0000

3.23 An Extension of An Abstract Template

o)

21 A Lavered Tmplementation of AT.SWRev

3.25 Behavioral Relationships of CT_SWRev_1

Vil

60

GO

62

65

66

o

69

3.26 Instantiation of CT_SWRev_1 v ...

3.27 A Direct Implementation of AT SWRev

4.1
4.2
4.3
4.4
4.5

4.6

5.4
5.5
5.6
5.7
5.8

5.9

A One-To-One Implementation-To-Specification Relationship
A Many-To-One Implementation-To-Specification Relationship
Java Encoding of CI_Flipﬂop_S implements Al Flipflop
Many-To-Many Implementation-To-Specification Relationships
Independent Mappings Between Spéciﬁcations and Implementations .
Java Encoding of AI_Flipflop_ With_Set extends Al _Flipflop
Package Specification for AT _Queuve
Package Specification for AT_Queue (Continued)
The implements Relationship in RA95
Concrete Child Coupled To Abstract Parent
Package -Spec‘iﬁcation for AT_Queue.CT_2
Package Specification for AT_Queue.CT_2 (Continued)
Package Body for AT_Queue.CT_2 . . .' e
Package Body for AT _Queue.CT_2 (Continued)

The needs Relationshipin RA95

5.10 Abstract Parent and Abstract.Child Extension

5.11 Package Specification for AT_Queue.With_Reverse

5.12 Abstract Parent and Concrete Child Extension

99

101

102

104

129

131

133

134

Xix

5.1 Package Body for AT_Quene With_Reverse.CT_1 136
5.15 The specializes Relationship, 138
.16 A Detailed View of AT _Queue.CT2a. 140
507 Abstract Template AT Queue.CT2a 141
518 Abstract Template AT_Queue.CT_2a (Continned) 142
519 The checks Relationship00 00 143
2.200 Abstract Parent and Conerete Cheeking Child 144
521 Package Specification for Abstract Temiplate AT_Queue.CT.0 146
5.22 Package Body for Abstract Template AT_Queue.CT.0 147
3.23 A Detailed View of CI_Enhanced._Integer Queue 1 148
5.21 Package Specification for CI_Enhanced_Integer Queue 1 149

.25 Package Specification for CI_Enhanced_Integer_Queue. 1 (Continued) 150

XX

CHAPTER 1

INTRODUCTION

Building software systems from reusable software components has been a goal of
software engineers for nearly three decades. At the 1968 NATO Conference On Soft-
ware Engineering, M. D. Mcllroy proposed a software components industry [McI76].
Software components with well defined interfaces would be built and then reused in
various software systems just as hardware components with standardized interfaces
are used to construct physical systems. Despite definite progress, the realization of
this goal remains surprisingly elusive [Tra95].

The motivation for component-based software engineering is even more compelling
today than in the past. Today’s software systems are extremely large and complex,
requiring long and costly development efforts. Developing new systems, in large part
by integrating existing software components (as opposed to building a system from
scratch), clearly offers the potential to reduce system development time and expense.
Furthermore, well designed component-based systems should be easier to maintain if
software engineers are able to perform some maintenance tasks at the component-level
rather than modifying individual lines of code.

Expensive hardware systems such as aircraft, communication networks, and fac-
tory assembly lines are designed so that various subsystems (both hardware and
software) can be removed and replaced in order to change the performance and func-
tionality of the overall system. Similarly, it should be possible to change the behavior
of a component-based software system in useful and predictable ways by replacing
some of the system’s components with other components. If appropriate replacement
components already exist, then the benefit of this approach is obvious. However,
even if new components need to be developed, a systematic design and implemen-
tation approach that supports the ability to substitute a new component for an old
one without making other changes to the system offers advantages over the ad hoc
alternatives. .

1.1 The Problem

The general problem this work addresses is the difficultly of designing and imple-
menting component-hased systems that support component-level maintenance. While
other engineering disciplines successfully apply the component-hased approach to
building and maintaining physical systems. it has proven much more difficult to apply
in software engineering. A primary reason for this diffienlty is that distinet software
components tend to be more tightly coupled with each other than most well-designed
physical components. Furthermore. software components are often designed with ex-
tremely subtle dependencies that are not explicitly described. These dependencies
may significantlyv complicate reasoning abont program hehavior [WH92].

1.1.1 Component Dependency Relationships

In cnrrent software development practice, most software components are designed
toserve a specific purpose within the context of a specific software svstem. As a result
a component! mav depend on other components nsed in a specific svstem. When
molated from the context of a specific system. a well-designed component still mayv
need 1o depend on other components to achieve its purpose. When one component
depends on-another specific component as a result of its design. we refer to this tvpe
of relationship as a design dependeney or say that one component is coupled by design
to another.

Minimizing desien dependencies (component conpling) has been recognized as a
primary goal in software engineering since the early 1970°s [SNICT4]. By minimiz-
ine a component’s dependencies on other components. we make a component easier
to understand. easier to reason about. and casier to rense in a variety of contexts.
For these reasons. minimizing design dependencies is an important prerequisite for
successful component-level maintenance.

When integrated into a software system. a component must be linked to other
components in that svstem in order to serve its purpose. The final binding of one
component’s operations to another component’s operations may take place statically
when parts of the system are compiled or when pre-compiled modules are linked.
Alternatively. one component’s operations mav be hound to the operations of another
component dynamically. at run time. We refer to the dependencies that arise from
intecration of components into a specific svstem as infeqration dependencies.

One way to understand the difference bhetween design dependencies and integra-
tion dependencies is to consider a library of reusable software components. All de-
pendencies beturcen individual components in the library are design dependencies
dependencies which. in general. should be minimized for the reasons cited above.

"Heneeforth, we will often use the term “component™ in place of “software component™ where it
i~ clear from context that the component in question is a software component.

However, an individual component in the library may be built from many other com-
ponents in the library. The dependencies between the sub-components composed
together within a single library component are integration dependencies. In this case
we can view a single, perhaps complex, component as a component-based system.
Assuming a component and its sub-components are well-designed, there is no reason
that the integration dependencies need to be minimized. In a well-designed system,
the integration dependencies are just those dependencies necessary to construct the
system.

1.1.2 Component Behavior

The reason for distinguishing between design dependencies and integration de-
pendencies has to do with reasoning about the behavior exhibited by execution of
component-based systems. For component-based maintenance of software to be vi-
able, software engineers must be able to reason about how the behavior of a system
changes when one component is substituted for another. That is, a maintainer of a
component-based system needs to be able to determine whether substituting a new
component for an old one will produce desired changes in system behavior without
producing undesired changes. Reasoning about the behavior of a component-based
system requires an understanding of the behavior of the system’s components and
how they are integrated together to form the system. However, if components are
designed, implemented, and integrated into systems carefully, it is possible to reason
in advance about some aspects of the post-integration behavior. '

Software components that support reasoning about certain specified aspects of
behavior, independent of the specific system into which they are integrated, are said
to support modular reasoning, and potentially, modular verification of correctness
[SW94, DL96, SG95, EHO94, EHMO91, WH92]. Modular verification is the process
of formally justifying that the execution of a software component will exhibit certain
specified properties when integrated into any system that guarantees certain specified
properties in return. The guarantees of the system (or client components) may be
viewed as the rules specifying legal compositions of components. When components
support modular reasoning, component-level maintenance is much easier. In fact,
it has been argued that component-level maintenance is technically an intractable
problem without the ability to reason modularly about components [WHH94]. When
reasoning modularly about the behavior of a component, design dependencies, and not
integration dependencies, determine what other components must be examined and
understood in order to understand specified aspects of post-integration component
behavior.

As an example, consider an implementation of a stack designed to use an existing
list component as its data representation. Stack operations such as Push and Pop can
be implemented with list operations such as Insert and Remove. In this case, the

3

stack component has a design dependeney on a list component. Now assume that
the stack implementation is generic it is parameterized by the tyvpe of items held
by the stack. For the stack implementation to he integrated into a svstem. it must
be instantiated with the type of item to he held on the stack. Assume that in a
particular svstem. the stack component is instantiated with tvpe Message defined in
a component providing an abstract data type (ADT) for certain kinds of messages. In
this particular svstem. the component formed by instantiating the stack with Message
hasanintearation dependeney. but no design dependeney. on the message component.

Now suppose the stack implementation is not coupled to any particular list im-
plementation. Instead. assume it is coupled to a component providing an abstract
deseription of a list implementation including the structural and behavioral speci-
fications of the Insert and Remove operations. When integrated into a particular
svstenn the stack implementation must be linked to a component supplving a partic-
ular list implementation. (At integration time it might even be linked indirectly to
one or more list implementations with final binding delaved until run time.) Within
the context of a specific system. the component formed by instantiating the stack
will have an integration dependeney on the component supplyving a particular list
implementation. Here the integration dependeney results directly from the design
dependency. Note that the integration dependency is a nieh stronger coupling in
this case sinee it requires commitment to one particular implementation whereas the
desien dependeney does not.

In order 1o fully understand the behavior of an integrated stack component. we
micht need to understand aspects of the behavior of the components providing the
stack item type and list implementation. However. to a great extent. we can un-
derstand the behavior exhibited by the stack operations withount knowing anything
about the tvpe of items held by the stack. Furthermore. we can understand how anc
why the stack operations work correctly without knowing precisely how the list is
implemented. We do. however. have to understand some aspeets of the behavior of
any list implementation that may be supplied. That is. we have to understand the
ramifications of the design conpling to a component describing list behavior. The kev
point is that we can reason abont many important aspeets of the execntion behavior
produced by the stack component before it is integrated into a svstem.

1.1.3 Behavioral Relationships

Modern programming langnages provide mechanisms such as interface-only com-
ponents. generies (templates). inheritance, and run-time dispatching of operations
that support varions forms of abstraction. When used in a disciplined manner.

these and other language mechanisms can help reduce design dependencies and en-
code behavioral relationships between components. For example, inheritance is of-
ten used to encode the behavioral relationship of subtyping [LW94]. Use of inher-
itance, however, typically increases design dependencies between components, and
thus should be used with great care. Few programming languages provide mecha-
nisms that directly support specification of component behavior. Rare exceptions
— primarily research languages — include Gypsy [AGBH77], Alphard [Shag81], and
RESOLVE [SW94]. To support reasoning about program behavior, programming lan-
guages may be augmented with a behavioral specification language (see, for example,
[SW94, DL96, Jon90, LvHKBOST7]).-

Software engineers maintaining component-based systems need to understand
both when it is possible and when it is appropriate to substitute one component
for another in a software system. The possibility of component substitution is de-
termined in current programming languages by syntactic constraints. That is, if two
components share a common structural interface, then it might be possible to substi-
tute one for the other. The appropriateness of substituting one component for another
depends on the behavioral properties of the two components and the desired changes
in system behavior. Thus it is important for system maintainers to understand the
behavioral relationships between components as well as the dependency relationships
between components.

The purpose of studying the software component relationships described in this
work is to concisely express design dependencies and behavioral relationships between
software components. These relationships provide implementers and maintainers with
useful information about how components may and should be linked together when
integrated into component-based systems. Furthermore, these relationships support
the goals of minimizing design dependencies and developing components about which
it is possible to reason modularly. Thus software component relationships can aid
maintainers in determining when one component may appropriately be substituted
for another. In doing so, they provide a useful framework supporting maintenance of
component-based software.

1.2 The Thesis

The work presented in this dissertation is based on three assumptions. First, we
assume that complex software systems will be built, to a large extent, from existing
software components. Second, we assume that maintenance of component based
systems will be more cost-effective when performed at the component level rather
than at the individual line-of-code level. Finally, we assume that large component-
based systems may be built from components about which it is possible to reason
modularly. |

The first assumption is easily justified since component-hased software reuse is
already being applied in industry. Studies have demonstrated that the economics of
software rense make this approach to software development very compelling [Pre97.
p. 717 Justification of the second assumption is based on the observation that com-
ponent replacement is generally easier than internal component modification when
replacenmient components are available. When replacement components are not avail-
able.either existing components must be modified or new components developed from
scrateh. Both of these options are considerably more expensive than reusing exist-
ing components {Sel89. po 22210 The third assumption seems plausible based on the
vescarch resnlts cited earlier. To date. there are very fow examples in the literature
of non-trivial applications constructed from components desiened specifically to sup-
port modular reasoning. However. commercial software packages developed by Joe
Hollingsworth serve as proof-of-principle [Hol97]. We believe that as the importance
of modular reasoning becomes more widelv understood. other development efforts
will further validate the third assumption.

Jased on these assumptions. this dissertation addresses the following research

185110,

e What relationships between software components do designers need to explicitly
document to best support component-level maintenance of component-based

svstems?

e How can these component relationships he used to support component-level
maintenance?

o How can these relationships he expressed in modern programming langnages?
In answering these questions. this dissertation defends the following thesis:

Component-level maintenance of software systems mayv be based on a
small set of hehavioral and dependeney relationships between software
components. Furthermore. these relationships can be encoded with the
language mechanisms provided by modern programming languages. al-

thongh not as easily as shonld he possible.

1.3 Related Research

The research presented in this dissertation builds upon RESOINVE-related re-
search "Har00, HWOI. Edwo0. MW90. WOZ91. Hol92. SWOL. Edwos. Weif7] per-
formed by the Reusable Software Research Group at The Ohio State University.
The RESOLVE language and discipline uniquely address many of the fundamental
problems in component-based software engineering. In particular. the RESOLVE

6

approach supports formal behavioral specification of components and efficient com-
ponent implementations about which it is possible to reason modularly. The property
of modular verifiability, exhibited by RESOLVE components, is critical to reasoning
about the behavior of component-based systems. Many of the commonly practiced
object-oriented techniques, however, fail to support the property of modular verifia-
bility [Sny86, Edw93].

The RESOLVE language primarily supports component adaptation through para-
metric polymorphism (generics). The ACTI model of software subsystems developed
by Edwards provides a formal model of the semantics of parameterized (and non-
parameterized) components. ACTI has been used in defining a formal semantics for
RESOLVE [Edw95]. RESOLVE, and especially ACTI, have been influenced by the
research into parameterized programming by Goguen[Gog84, Gog86]. The research
we present in this dissertation adopts the basic component model of ACTL

During the past decade, most research in component-based software has focused
on object-oriented techniques. Widely used programming languages such as C++
[Str93] and the 1995 revision to Ada® [Int95b] provide language mechanisms sup-
porting both parametric polymorphism and object-oriented techniques. Several well-
known authors have written extensively about the construction of object-oriented, or
“object-based”, software components. Grady Booch’s “Booch Components”, imple-
mented in Ada83 [Boo87], have served as the most widely adopted model for software
components written in Ada. After his initial work in Ada, Booch re-implemented
his component library in C++. In describing the design of his C++ components
[Bo090, Boo94], Booch discussed the use of object-oriented language mechanisms and
templates. Banner and Schonberg [BS92] examined implementing a software compo-
nent librarv in Ada9X, a preliminary version of the 1995 Ada definition. Building
upon this work and with concurrence from Booch, David Weller has begun imple-
menting “The Ada 95 Booch Components” [Wel95]. Weller is currently implement-
ing these components using Ada’s new object-oriented features in a fashion similar
to Booch’s use of C++’s object-oriented features. Recent work by Magnus Kempe
[Kem95] examining the use of Ada’s new language mechanisms for implementing
software components also appears to be heavily influenced by Booch’s work.

As pointed out by Hollingsworth [Hol92], Booch’s original Ada components fail
to satisfy the goals of the RESOLVE approach. For example, Booch’s polylithic
components (e.g., list, tree, and graph) rely on reference semantics. As a result,
systems using these components are not amenable to modular reasoning. Booch’s
C++ components and the Ada approaches described by Weller and Kempe also fail to
use language mechanisms in a manner consistent with modular reasoning. Aside from
the work of Falis discussed below, there does not appear to be any published research

2In this document, the term “Ada”, without further qualification, is used to refer to the 1995
definition of the Ada programming language, previously known as Ada9X, and sometimes called
Ada 95.

mto how the new langnage mechanisms of Ada can be applied to the construction of
modularlv-verifiable component-hased software.

Another well-known author who has written extensively about reusable software
components is Bertrand Mever [Mev88. Mev01]. Mever is a leading advocate of
object-oriented programming and is the principal developer of the Eiffel program-
mine language INev&8E Mever [Nev86] and Seidewity, [Sei9 4] have written about the
relative strengths and weaknesses of inheritance and generies (parametric polvior-
phismi. Both authors conclude that the two approaches may be used in a comple-
mentary manner. However. there appears to be very little research into the combined
application of these two approaches. especially for practical imperative programming
lancuages sueh as Ada and 4+

The Ada language-specific aspeets of this work presented in Chapter 5 share goals
similar to those of work on the development of the I{I?’Q()I\'I"/('J»* (RCPP) disci-
pline Weid7. The RA9S approach presented in ¢ hapter 5. however, differs from the
ROPT approach in several aspects. First. in Chapter 4 we focus on understanding
hove a wide variety of langnage mechanisms mav be used best in component-based
software engineering. Second. the research primarily investigates the language mech-
anisms of Ada. which differ in many wavs from those of C+-+. Third. the approach
to embedding the RESOLVE Tangnage into Ada is fundamentally different from that
used by RCPP.

The ROPP discipline relies heavily on the use of preprocessor macros that serve
to make the “sonree™ language of RCPP appear substantially different from normal
C~=. The benefits of this approach include making the RESOINVE and ACTI per-
spectives more explicit in the sonree language. hiding annoyving C++ svntax. and
improving maintainability by reducing souree redundancey. The approach to RA9S
presented in Chapter 5 does not require the use of a preprocessor. Following the RA9S
discipline entails coding direetly in Ada. One benefit of this approach is that RA9)
nses lanenage mechanisms of Ada largely as they were intended to be used. This
approach should make explaining the rationale for RA95's use of various langnage
mechanisms easier. Another henefit is that maintenance of RA93 code is mainte-
nance of Ada code. Thus. analvsis and maintenance tools available for Ada should
be directly applicable to RA95 source code. Finally. a possible practical benefit of
this approach is that RA95 may be more accessible to experienced Ada programiers
than RCPP is to experienced C4+4 programimers.

The research presented in Chapter 5 also is related to an carly exploration of
mapping RESOLVE to the 1995 version of Ada by Ed Falis at Thompson Software
Falos. I‘dll\ work centers around the use of the bridge and factory design patterns
(7“ 05) to support run-time selection of component operations in Ada. Falis™ work
inflienc wl work by Edwards on run-time selectable (Level 2) components now incor-
porated into RCPP. RA95 has borrowed some ideas from Falis” work. but takes a very
different approach. The RA9S discipline presented in Chapter 5 does not use dynamic

8

binding mechanisms. The work of Falis assumes that dynamic binding will be used.
While we discuss dynamic binding in Chapter 4, its incorporation into RA95 would
add significant complexity and does not appear necessary to encode the component
relationships presented in Chapter 3.

Another area of related RESOLVE research is the work by Joe Hollingsworth
on the RESOLVE/Ada discipline based on the 1983 version of Ada (RA83) [Hol92].
Hollingsworth’s research demonstrated that the RESOLVE approach could be applied
using a programming language other than RESOLVE, namely, Ada83. Since the
development of RA83, both RESOLVE and Ada have changed. The major change
to RESOLVE has been the incorporation of many of the ideas of the ACTI model
of subsystems [Edw95]. The ACTI model provides a formally-based framework for
describing software components and the relationships between components. In 1995,
a major revision to the Ada language was finalized and a new language standard
was established. The revised Ada includes many new language mechanisms that
are useful in describing components and component relationships as characterized by
ACTI. While the RA95 discipline preserves many aspects of RA83, the focus of this
research has been on the use of Ada’s new language mechanisms and exploration of
ACTI-inspired component relationships.

Many researchers have worked on formal reasoning about object-oriented pro-
grams. Most of this related work focuses on the formal definition of behavioral
subtyping [CW85, LW90, LW94, SG95, DL96]. The Theta programming language
[LDGM95, LCD*94}, developed at MIT, incorporates ideas from this work. Theta
provides separate mechanisms for type hierarchy, parametric polymorphism, and in-
heritance. The separation of type hierarchy from inheritance allows related types to
have independent implementations and unrelated types to have related implementa-
tions [LCD*94, p. 1]. RESOLVE also provides this flexibility, but the inheritance-
based type systems of Ada and C++ are more restrictive.

1.4 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we
develop a framework and notation for describing behavioral relationships between
software components and identify fundamental component relationships. In Chap-
ter 3, we define a useful set of component relationships based on those identified in
Chapter 2 and describe how they may be used to support component-based soft-
ware development and maintenance. In Chapter 4, we discuss how the relationships
described in Chapter 3 may be encoded using the language mechanisms of modern
programming languages. In Chapter 5, we describe the RA95 discipline and show
how the component relationships presented in Chapter 3 are encoded in RA95. Fi-
nally, Chapter 6 summarizes the research presented in this dissertation, describes the
contributions made by this work, and proposes suggestions for further research.

160

CHAPTER 2

A MODEL OF BEHAVIORAL RELATIONSHIPS
BETWEEN SOFTWARE COMPONENTS

In this chapter we develop a model of behavioral relationships between software
components. These relationships serve as a basis from which we derive the more
practical set of relationships described in Chapter 3. Section 2.1 discusses the re-
quirements for interchangeable software components and motivates the need for the
relations developed in the subsequent sections. Section 2.2 describes how components
and their associated behavior are modeled. In Sections 2.3 and 2.4 we define confor-
mance and dependency relations in terms of the behaviors described by components.
Section 1.3 reviews related research and Section 2.5 summarizes the chapter.

2.1 Interchangeable Components

As briefly discussed in Chapter 1, one of the differences between most physical
systems and software systems is the difficulty involved in replacing whole components
and consistently achieving a desired effect. For example, consider a common table
lamp composed of components such as a base, a switched socket, an electrical cord,
a shade, and light bulb. We can change the behavior of the lamp simply by replac-
ing one light bulb with another. Much more complex physical systems offer similar
possibilities. For example, most desktop computers are easy to “upgrade” by adding
new components or by replacing existing ¢components in toto. In fact, many desktop
computers are designed so it is possible to remove the central processing unit and
replace it with a newer, more powerful version. We would like to be able to maintain
component-based software similarly.

2.1.1 Component-Level Maintenance

Component-level maintenance involves changing the behavior of a software sys-
tem in useful and predictable ways by removing and replacing software components
rather than by modifying individual lines of executable code. Reasons for changing
a system’s behavior include:

11

. impru\‘irng svstem performance.

e adding new functionality,

e adapting the system to new hardware or svstem software. and
e correcting defects in existing functionality.

The first two of these activities are called perfective maintenance. The last two are
called adaptive maintenance and corrective maintenanee. respectively. According to
one widelv-cited study of nearly 500 software projects, approximately 70% of main-
tenance costs about half of the total life-cxcle costs of typical software svstems

are attributable to perfective and adaptive maintenance [LBSB&0]. Clearly any
approach that makes it easier for software engineers to improve svstem performance.
extend system fiumetionality, and adapt svstems to new environments can have a sig-
nificant impact in reducing software costs. Component-level maintenance can redhce
the effort required for each of these maintenance tasks.

For component-level maintenance to be possible. software engineers must be able
to answer the following question.

Given system (or component) I which uses component Y. can component
X be substituted for Y in 2 and maintain all of the properties that P
required of Y77

In order to answer this question on a syvstematic basis. three issues must be ad-
dressed: the structural conformance of the new component. the behavioral confor-
mance of the new component. and the mechanies of the substitution. We discuss
conformance issues in this chapter. We discuss mechanisims supporting the mechan-
ies of substitntion in Chapter 1 and provide examples in Chapter 5.

Software components must be designed and implemented so that system main-
tainers can substitute one component for another and understand the effocts of doing
so on the system’s behavior. A kev challenge is to make it easier for a maintainer to
achieve desired changes in svstem hehavior without causing any undesired changes
in behavior. For example. to improve execution time. we might want to replace one
component with another that provides a more efficient implementation of some fune-
tionality. While it is important that the change improves svstem performance. it
Is Just as important that use of the new component preserves the original system
fiumctionality. In practice. the question asked above is difficult to answer correctly
and. in factis undecidable in the general case. Nevertheless, if software components
are desiened and implemented with the objective of substitutability in mind. this
question is mnch easier to answer aceurately. The principal reason for studving the
component relationships defined in this dissertation is to enable software engineers to
answer this question more casily.

12

2.1.2 The Role of Interface Specifications

Well-specified component interfaces make possible component-level maintenance
of physical systems. Furthermore, standardization of interface specifications makes
component-level maintenance of most physical systems commercially viable. An in-
terface specification describes the requirements that a component must satisfy in
order to interact with other “external” components, that is, other components in its
environment. Note that an interface specification must address requirements on both
sides of the interface. For example, in the case of a light bulb, the standardized inter-
face specification must describe the width, depth, and threading (and other details) of
a light bulb base. Such a specification places requirements both on conforming light
bulbs and on lamp sockets designed to use conforming light bulbs. That is, both light
bulb designers and light bulb socket designers must refer to the common interface
specification in order for component-level maintenance of lamps to be possible.

The importance of well-defined interfaces for software components has been un-
derstood for many years. Many programming languages provide support for defining
software component interfaces. However, most programming language support for
interface specifications only addresses structural aspects of the interface, and not be-
havioral aspects. For some physical components, such as nuts and bolts, interface
specifications only need to address structural issues. However, even for a component
as simple as a light bulb, an interface specification may need to address more than
purely structural requirements. The light bulb interface specification may need to
specify minimum and maximum voltages and amperages required for proper bulb
illumination and state that when an appropriate current is applied, the light bulb
will illuminate. In the case of computer components, interface specifications clearly
must describe much more than pin counts, shapes and sizes in order for components
to interact successfully.

To determine if one software component may be substituted appropriately for an-
other, both structural conformance and behavioral conformance must be addressed.
Structural conformance is concerned with the names and signatures of component fea-
tures. In many programming languages, the structural conformance of a component
to an interface specification is determined partly by type checking. In statically-
typed languages, structural conformance is checked either by the compiler or by the
linker when a component is integrated into a system — prior to runtime. Behavioral
conformance is concerned with whether a component’s operations, when executed,
will produce the desired (specified) effect. Checking behavioral conformance is, in
general, much more difficult than checking structural conformance. The principal ap-
proaches to checking behavioral conformance are testing and verification techniques
(both formal and informal). Both approaches have their strengths and weaknesses.
Whichever approach is used (a combination of verification and testing is typically the
best strategy), interface specifications that clearly describe behavioral requirements
are essential.

13

2.1.3 Substitutability

Assume that two components X and Y have well-specified structural and behav-
ioral interfaces deseribing the services they provide and the services they require from
any svstem into which thev arve integrated. It would be useful to know whether \
is substitutable for Y in any program (component-based system). Unfortunately.
without knowing the specific behavior that some system expects of Y. we cannot de-
termine if X can be substituted for Y except in a few degenerate cases. If X and Y are
identical components (two different components with different names. but identical
content) then we may safely conelnde that X' is substitutable for Y in all programs.
However: in this case. there is clearly no reason to make the substitution since it
shonld not change the behavior of the svstem in any respeet. X and Y might also
be nearly identical except that for some inputs an operation supplied by 1~ goes into
an infinite loop whereas the corresponding operation in X does not. If we make the
reasonable assimption that no “correet™ program would enter an infinite loop. then
we may conclude in this case that X may he substituted for Y in any (correct) pro-
gram. Despite the fact that X and Y implement different bhehavior. the assumption
ensures that no correct program would use Y or X in a way that could distingnish
between the behaviors they implement.

An embedded real-time svstem might place timing and resource utilization re-
quirements on the components it uses. In this case. simply comparing the functional
behavior of two components is not sufficient for determining substitutabilitv. For
example. consider the case where X is identical to Y except that it has an additional
operation that does not affect any state observable by any of the component's other
operations. Here the behavior provided by X" might appear to be a sub-behavior of
that provided by Y. However, if the inereased memory required to store the code of
N5 additional operation (whether or not it is nsed) exceeds the resource utilization
limits that a program places on component Y. then X is not substitutable for ¥ in
that system. Fortunately, most systems do not bump up against extremely strict
limits on resource utilization and operation execution time.

In general. then. the only way to determine if component X is substitutable for
component Y is within the context of a specific svstem where the requirements for Y
and thus for anyv component replacing Y. are clearly understood. The requirements
a system or component has on another component may he expressed in terms of an
interface specification. That is. if program P can use any component that provides
the behavior deseribed by interface specification S, then P should not be encoded to
depend on a specific component. say for example. Y. If we encode P in such a way
that it may be linked 1o any component implementing the behavior described by S.
then component-level substitution becomes possible. If both X and Y conform to
interface specification S. then X may be substituted for Y with respeet to S in any
program P.

14

requires a bulb
\conformiy
> D

Standard
Light Bulb

I\
N~

conforms to

Figure 2.1: Conformance and Requirement Relationships — Physical Components

Consider, again, the analogy to a table lamp. A standard component integrated
into most table lamps is a switched bulb socket. A lamp manufacturer is likely to
select the kind of socket to be used in a particular lamp from a catalog of existing
bulb sockets. A key factor in the selection of a socket is that it be designed to accept
standard light bulbs. A description of the bulb socket selected should specifically state
that the socket requires a bulb conforming to the standard light bulb specification.
The socket description clearly should not require a specific brand of bulb. In addition
to varyving by brand, acceptable light bulbs may also vary in power consumption,
radiance, color, durability, and other characteristics not fixed by the standard light
bulb specification. Since many different kinds of light bulbs are designed using this
specification, bulb sockets that require bulbs that conform to this specification will
work with many different kinds of light bulbs.

Figure 2.1 depicts the conformance and requirement relationships involving light
bulbs, light bulb sockets, and a light bulb specification. The arrows on the bottom
indicate that the light bulbs shown satisfy the requirements described by the spec-
ification. The arrows on the top indicate that the bulb sockets require a light bulb
(any light bulb) that conforms to the specification. Together, these two design rela-
tionships allow construction of lamps for which component-level maintenance (bulb
replacement) is possible.

The analogy between physical components and software components is not perfect.
Nevertheless, the role of behavioral interface specifications for software closely par-
allels the role of interface specifications for physical components. Figure 2.2 depicts
relationships between software components analogous to those shown in Figure 2.1
for physical components. The shaded rectangular boxes at the bottom of the figure

15

Stack Implemented
With List

requires an implementation
conforming to

Queue Implemented

With List

List
Bchavioral
Interface

List Implemented
With Array

conforms to

List Implemented
With Linked Nodes

Fieure 2220 Conformance and Requirement Relationships

Software Components

depict two different implementations of a list data tvpe that conform to the list inter-
face specification depicted by the oval box in the center. The two boxes at the top of
the diagram depict two different components each of which require an implementation
conforming to the list specification. The stack and quene implementations on the top
arc chient components with respeet to their dependeney on a list implementation.
Onee integrated into a software system. cach of these components must be linked to
a specific list implementation. However, designing and implementing client COMpo-
nents so that they depend on behavioral interface specifications for the componetits
they use rather than on specific implementations. makes it possible to substitute one
implementation of the specified behavior for another.

2.2 Components and Behavior

In this section we deseribe a model of software components and the hehavior
associated with the modeled components. Thus far. we have been using the term
“software component™ informally to refer to a unit of code which might be incorpo-
rated into an executable software system. In the model. we broaden the definition of
“software component™ to include hehavioral interface specifications and parameter-
ized modnles called templates. The model places very few constraints on the specific
formr and content of components. in order to maintain language independence. But
for the purposes of understanding the model. considering a component as either a
specification or as an implementation of an abstract data type (ADT) will not lead
the reader astrav. In Chapter 1. we discuss specific wavs in which components may
be represented using specification and programming languages.

16

The model of component relationships described in this chapter consists of four dis-
joint sets of software components: CT (concrete instances), CT (concrete tem-
plates), Al (abstract instances), and AT (abstract templates). The model also
includes the set M of mathematical theory modules (math modules, for short).
For convenience, we define the set C = CI U CT U Al U AT of all modeled
components and the set U = C' U M of all modeled syntactic units. Elements of C'I
and CT are concrete components that describe how the behavior of operations is im-
plemented. Elements of Al and AT are abstract components that serve as behavioral
interface specifications. The components in CT and AT are templates while those in
C1 and AI are not (they are instances). Elements of M define mathematical theories
which provide the foundation for defining the semantics of all elements of C'.

All units in U must be encoded in some language L appropriate for specifying
and implementing program behavior of interest. L may be a single integrated speci-
fication language such as RESOLVE [SW94] or the result of integrating independent
specification and programming languages such as the approach used by Larch [GH93]
and as exemplified by the RESOLVE/Ada95 components shown in Chapter 5.

The classification of software components into these four categories is based on
Edwards’ ACTI model of software subsystems [Edw95]. ACTI stands for Abstract and
Concrete Templates and Instances. However, in the ACTI model, the term “concrete
instance” refers to the run-time denotation of an executable subsystem. In contrast,
we use the term “concrete instance” to refer to the syntactic encoding of a component
for which the run-time semantics may be modeled as an ACTI concrete instance.
Similarly, we use the terms “concrete template”, “abstract instance”, and “abstract
template” to refer to syntactic units of software whereas ACTT uses the terms to refer
to a denotational semantics-based representation of the run-time behavior described
by the corresponding components. The ACTI model does not define a separate unit
corresponding to math modules. Instead, ACTI components include specification
adornment environments [Edw95, p. 85] which may be used to construct components
that serve the same purpose as our math modules.

The model requires that -every unit in U have a unique unit name. When
referring to individual units, we shall use lower case identifiers such as u, m and ¢;
to denote unit names. A unit’s content is the string of symbols associated with a
unit name and encoding a math module or a component. The only syntactic aspect
of a unit’s content that is modeled directly is its context. The context of a unit is
the finite set of all externally defined units upon which a unit directly depends.

Any unit in U may be defined directly or indirectly in terms of a finite number
of other units in U. If one unit, say u; is defined in terms of another unit, say uo,
then u; depends on uy,. Components in C' may depend on math modules in M and
other components in C. Math modules may only be defined in terms of other math
modules in M. In order for u; to depend directly on us, the name of unit u, must
appear in the content of unit u;. That is, when referring to an implementation or

17

specifications
of program
well-formed behavior components
units of . i (C)
lansuage L] implementations
Uy of program
behavior
mathematical
theory descriptions

Figure 2.3: Components and Math Modules

specification element which u; does not itself define. v, must explicitly name the unit
defining the referenced element. Note that no unit depends directly on itself. We
refer to a unit’s context by using the projection function etx:{ — P;U (where PrU
denotes the set of all finite subsets of 7)) defined as follows:

ctx(u) = {u' € U — {u} : v depends directly on o'} (2.1)

We also require that all units in U be well-formed with respect to the svntax of
the Tangnage L. Only well-formed units are assigned a meaning as discussed in the
following sections. Figure 2.3 depicts the five syntactic categories of units in language
L discenssed in this seetion.

2.2.1 Implementation Components

The set CT of conerete instances consists of all possible (uniguely named) imple-
mentation components that may be expressed by finite length strings in some fixed
lancuage L. A conerete instance has no parameters and represents a program unit
with completely defined operations ready to integrate into a software svstem. For
the purpose of deseribing elements of C'7. L may be viewed as a programming lan-
guage (angmented by a specification language) and element of C'1 as implementation
modnles. As noted above. every elements of C'7 must be well-formed and have a
well-defined meaning. Thus. each element of C'7 mmst be a legal implementation
module in accordance with the syntax of L. While a member of C'7 is a finite string
of symbols from the finite alphabet of L. there is no upper bound on its size. Thus

18

any useful L supports description of a countably infinite number of concrete instances
— the size of CT is ¥y. A component providing a complete data representation and
fully implemented operations for manipulating a list of characters is an example of a
concrete instance.

The set CT of concrete templates consists of all possible (uniquely named) param-
eterized implementation components that may be expressed as finite length strings
in L. The only difference between the content of elements of C'I" and CI is that an
element of CT refers to a single abstract instance that serves as a formal parameter
for which the actual parameter is a concrete instance®. Whereas an element of CI
models a ready-to-use component that may be incorporated directly into a larger
system, an element of CT models a component that must be instantiated in order to
generate a concrete instance. An implementation of a list parameterized by the type
of elements contained within the list is an example of a concrete template.

The motivation for modeling concrete instances is clear — they represent the
modules that make up a fully integrated component-based software system. Concrete
templates also play an essential role in the model. They provide direct support for
substitutability and thus are useful for more than just the generalization of families
of related implementations. We discuss the primary role of concrete templates in’
Section 2.4.2.

2.2.2 Specification Components

In previous sections, we have referred to a behavioral interface specification as
if it were different-in-kind from a software component. With physical systems, in-
terface specifications and the physical components that conform to them do tend
to be markedly different. For example, we are unlikely to confuse light bulbs and
light bulb sockets with the specification document describing their standard inter-
face. The situation is different, however, with software. Software components are
svmbolic descriptions of possible computer behavior. A software interface specifica-
tion that describes what computer behavior is required and a software component
that describes how some computer behavior is achieved are quite similar in nature.
Both play important roles as parts (components) of a complete description of how a
component-based software system may be constructed or has been constructed. To
reflect the important role of software interface specifications, we include in our def-
inition of “software component” both implementation components, members of C'I
and CT, and specification-only components, members of AI and AT.

The set AT of abstract instances consists of all possible (uniquely named) spec-
ification components that may be expressed by finite length strings in some fixed

3We limit a template to a single parameter for modeling convenience. However, multiple para-
metric dependencies may be modeled by a single formal parameter where the actual parameter is a
single concrete instance that satisfies all of the requirements expressed by what would otherwise be
several parameters.

19

lananace Lo An abstract instance has no parameters and represents a set of ready-
to-use behavioral interface specifications. For the purposes of deseribing elements
of AT L may be viewed as a specification language angmented by a programming
language in which the syntactic (structural) interface of an implementation module
mayv be defined independently from its implementation. Each element of A7 is a
well-formed specification in accordance with the syntax of L. For anv useful L. the
size of AT is Voo An element of AT specifies a behavioral interface that desceribes
the externally visible structure (signature) and associated operation behaviors that
conforming conerete instances must provide. Thus, the specification elements of L
shonld he sufficiently expressive to deseribe any hehaviors of interest that mav be con-
structed with the implementation elements of L. L might need to be very powerful in
order to specifv. perhaps non-deterministically, the functional and temporal aspects
of behaviors exhibited by complex implementations. In general. L may need to rely
on hicher-order logies and a wide variety of mathematical and application domain-
specific theories. Software specification languages sneh as Z. VDML the Larch Shared
Lancuage. and the specification sub-langnage of RESOLVE are all possible candi-
dates for the specification notation of L. A component specifving the sienatures and
behavior of operations manipulating a list of characters (without describing the list
implementation) is an example of an abstract instance.

The set AT of abstract templates consists of all possible (uniquely named) pa-
rameterized specification components that may he expressed as finite length strings
in L. The relationship between elements of AT and elements of AT is analogous to
the relationship between elements of C'T and CT. The only difference between the
content of elements of AT and AT is that an element of AT refers to one abstract in-
stance that serves as a formal parameter for which the actual parameter is a conerete
instance. An element of A7 models a generie behavioral interface that must be in-
stantiated in order to generate an abstract instance. A specification of the signatures
and behavior of operations manipulating a list that is parameterized by the tvpe of
elements contained in the list is an example of an abstract template.

As a specification independent from particular implementations. an abstract in-
stance may serve two closely related but distinet roles. First. an abstract instance
may be nsed to deseribe the behavior of one or more conerete instances which con-
form toit. This role is depicted in the bottom half of Figure 2.2, Second. an abstract
instance may he used to deseribe the behavioral requirements of a component at an
abstract. implementation-independent level. This role is depicted in the top half of
Ficure 2.2 An abstract template is primarily a convenient way of generalizing a set

of closely related abstract instances.

Maintaining specification components alongside implementation components al-
lows them to be used for structural (syvatactic) conformance checking at component
compilation and integration time. Specification components mav also be used for

20

behavioral (semantic) conformance checking during the process of certifying that a
particular implementation conforms to a specification, when such a claim is made.

2.2.3 Math Theory Modules

The role of mathematical theory modules is to encode mathematical objects for
use in modeling program behavior. We rely on set theory to provide a foundation
upon which arbitrarily complex state spaces and transitions may be built to math-
ematically model program behavior. Enderton describes how mathematical objects
such as numbers (natural, integer, rational, and real numbers), tuples, functions,
and relations may be represented with sets [End77]. For example, logicians typically
represent the set of natural numbers {0,1,2,...} by the set {0, {0}, {0,{0}},...} in
which the empty set represents zero and each of the other natural numbers is repre-
sented by the set of natural numbers that precede it. Using constructive definitions
such as this, it is possible to define the domains of mathematical theories (such as
number theory for naturals) and then prove the azioms of those theories using only
the axioms of set theory?.

Mathematical theories and their associated domains, operators (functions and re-
lations over the domain), and defining axioms are encoded in math modules (elements
of M) for use by components and other math modules. We adopt the terminology
defined in [HLOW94] and call the domain associated with a theory a math type (oth-
ers use the term sort) and functions and predicates associated with a theory math
operations. The motivation for this terminology is to draw an analogy between math
types and operations and program types and operations. The meaning encoded by
a math module is derived from an interpretation of the math type and math oper-
ations that it defines. An interpretation function Z maps the math type and math
operations defined by each math module to representative sets. The domain of Z is
the set of math modules A/. The range of 7 is a collection of sets V', large enough to
model any program behaviors of interest®. '

For example, Z might map the natural number math type defined in a math
module for number theory to the set {0, {0}, {0, {0}},...}, the constant math op-
eration 0 (zero) to @, a math operation for successor to the set of ordered pairs
{(0,1),(1,2),...} (with pairs encoded as sets), and so forth. The interpretation of
this theory, as conveyed by axioms stated in the math module, is that elements of
the math type represent (the mathematical concept of) natural numbers. Of course
(infinitely) many other sets in V' could be used to represent natural numbers. In
defining the role of Z we just require that it map each mathematical object defined

4Zermelo-Fraenkel set theory with the Axiom of Choice (ZFC) provides widely-accepted axioms
suitable for defining much of mathematics in terms of set theory [End77, p. 253].

5A collection V suitably large for any modeling need is the proper class of all sets [End77, p. 210]

21

by a math module to some set in V- for which the axioms stated in the math module
can be justified. ultimately in terms of the axioms of set theory.

Using the model-based specification approach. cach program type from which pro-
aram objects (variables) may be declaved is modeled by a math type. The semanties of
L fixes the math models for any program types built in to L. Common built-in types
for programming languages inclide Boolean. integer. character. and floating point
scalar types as well as tvpe constructors for static data structures such as records
and arravs and for dyvnamic pointer-based structures. The semantics of L also must
define the meaning of built-in control structures such as statement sequences. condi-
tional statements. loops. and procedure and function calls which appear in concrete
imstances and conerete templates. When a component (a member of (') defines a
(non-built-in) program type. the program type is associated with a math tvpe (de-
fined in a math modnle) that serves as the behavioral model for the program type.
The math operations defined by the axioms and theorems of a theory associated with
the math type are used to deseribe the behavior of program operations on objects of
the program tyvpe.

2.2.4 Component Behavior

Up to this point we have used phrases such as “computer behavior™. “hehaviors
implemented by a component™. and “behaviors specified by a component™ without
attempting to define the term “hehavior™. To model conformance to behavioral inter-
face specifications. we must include some concept of computer behavior in the model.
In order to make the model as language-independent as possible. however. the model
cannot be too specific abont the exact form of modeled hehaviors.

The standard approach to modeling computer behavior is to define a collection
of states and transitions between those states, A state represents the status between
transitions of the physical system (a computer or computer-controlled svstem) that
carries out operations described by software. The transitions from state to state
represent the behavior of the physical svstem and thus the bhehavior deseribed by
the software. The semantics of a programming language maps well-formed svntactic
elements of the langnage to sets of transitions in the state space. The definition of
the states. which may be expressed in terms of an abstract machine rather than a
specific computer. determines the extent to which different physical behaviors can be
distingnished by the semantics of a programming language.

The approach we use to characterize the semantics of software components is to
assnme a traditional (operational or denotational) semantics for conerete instances
and then define the semanties of elements of A7 CT. and AT in terms of the semantics
of elements of C'1. Sinee a conerete instanee has no unresolved external dependencies.
the semanties of a conerete instance that implements a single operation may be treated
like the semantics of a single complete program. The semantics of a concerete instance

22

that implements more than one operation may be treated as potentially interacting
programs that may manipulate a common state.

We use the semantic function S to describe the mapping of software components
(all members of C) to a set-based representation in V. Since the meaning of each
program type used within components is determined by its associated mathematical
model, S is determined in large part by the mappings of Z. For example, say com-
ponent ¢ € CI refers to program type tp which is modeled by math type T'M. Then
within the representation of S(c), objects of program type ¢ will be represented by
the set given by Z(T'M). Since all elements of C' must be well-formed components,
S is a total function with domain C. However, the range of S is likely to be only a
small portion of V' which corresponds to sets that model program behavior.

We model the behavior of a concrete instance by a single element of the collection
B of abstract behaviors which is a subset of V. The semantic function & maps
each element of CI to an element of B. For ¢ € CI, S(c) represents the meaning
(semantics) of ¢ in the model of behavior used to define B. The set S(c) represents an
aggregation of lower-level semantic functions yielding the meaning of each operation
defined in ¢, which may be defined in terms of the operations in other concrete
instances upon which ¢ depends, all of which are ultimately defined in terms of 7 and
the semantics of elements of L.

The nature of an element of B depends upon the type of semantics used to define
L. Consider a concrete instance ¢ € CJ which implements and provides for use to
other components three operations: o0, 02, and o03. Then the essence of S(c) € B is
the set {S,(01), S,(02), S,(03)} where S, defines the semantics of program operations.
S(c) might also incorporate specification information to aid in formal verification. If
S defines the meaning of strings of L in terms of a denotational semantics, then S,(o)
would correspond to a partial function from states to states. The domain of the func-
tion would represent all states in which the operation could be applied meaningfully.
Application of the function would model the change in state resulting from execution
of 0;. If S defines the meanings of strings of L in terms of an operational semantics,
then S,(0;) would correspond to a set of sequences of states. Each sequence would
correspond to all intermediate states along one possible “execution path” through o,.
The space of ACTI concrete instances [Edw95, p. 66-77] is one way in which B might
be defined using a denotational semantics approach.

To keep the model as simple as possible, we define the semantics of abstract
instances eztensionally. We define the meaning of an abstract instance as the set
of meanings of all concrete instances which conform to the behavior specified by
the abstract instance. Using this definition, the range of the semantic function S
with domain restricted to Al is the power set of B, PB — the set of all subsets of
B. A specification a € AI may be thought of as stating a behavioral requirement.
Each behavior in B either does or does not satisfy that requirement. & maps each
specification in AT to the set of all behaviors in B that satisfy the specified behavioral

23

Fignre 2.4 Implementations. Specifications. and Behaviors

requirement. It is possible for a specification @ € AT to state a requirement that no
behaviors in I3 satisfy. In this case. S(a) = (0. Figure 2.4 depicts all of the spaces
i the model exeept for template components and their associated semantics. The
semantics of template components will be discussed in Section 2.4.2.

Defining the semantics of a langnage L to the degree necessary to formally justify
that an element of C7 indeed conforms to an element of A7 is a significant undertak-
e, Furthermore, onee § and B have been defined for a specific langnage L. the task
of verifving whether some ¢ € C1 is correct with respect to some a € Al may be ex-
tremely difficnlt and theoretically impossible in some cases. Nevertheless, it is possible
to formally define the semanties of programming languages supporting component-
based software engineering and to formalize the rules for Justifving the correctness of
implementations with respect to behavioral specifications [Kro88. Hey05,

D] *1

2.3 Conformance Relationships

As explained in Section 2.1, in order to support component-level maintenance,
we need to address the issue of an implementation’s conformance to a behavioral
interface specification. We would like to be able to conclude that if an implementation
“conforms to” a specification, then that implementation may be used wherever there
is a requirement for the behavior described by the specification. In this section we
define three component conformance relations. Section 2.3.1 defines the fundamental
conformance relation between concrete instances and abstract instances. Section 2.3.2
defines a conformance relation between two abstract instances.

2.3.1 Implementation-To-Specification Conformance

Informally stated, if ¢ € CI conforms to a € AI, then ¢ must fully and correctly
implement all behavior described by a. However, ¢ may also implement behavior
not specified by a as long as all requirements of a are satisfied by c¢. While this
conformance relation is stated in terms of ¢ and a (strings of symbols), it is the
structure and behavior implemented by ¢ that must conform to the structure and
behavior specified by a. Using the semantic function S and the collection of modeled
behaviors B described in Section 2.2.4, we define the conformance relation imps:C1T x
Al as follows:

imps(c,a) = S(c) € S(a) . (2.2)

The predicate imps(c,a) may be read as “component ¢ implements component
a”. Figure 2.5 depicts this relationship with a solid arrow from implementation c to
specification a. The behavior implemented by ¢, S(c), is represented by the point
b € B. The set of behaviors specified by a, S(a), is depicted by the single point in
PB and by the dashed gray oval in B. The double-ended gray arrow between B and
P B points to both representations of this set. Since, in this example, ¢ implements
a, b is a member of the set S(a).

imps is a many-to-many relation. Just as there are many different ways to imple-
ment a given specification, there may be many different ways to abstractly describe
behavior provided by a single implementation. Implementations conforming to the
same specification may vary in ways that do not affect the behavior implemented
(e.g., the number of embedded comments, which might affect maintainability but not
the run-time behavior). Since a conforming concrete instance may describe behavior
not required by an abstract instance, implementations conforming to a common spec-
ification also may differ with respect to their implementations of these “additional”
behaviors. Conforming concrete instances also may implement non-deterministically
specified behaviors in ways that produce significantly different behaviors and yet still

25

Figure 2.5: The imps Relation

conform to the abstract instance. The possibilities are analogons for multiple specifi-
cations that accurately characterize a single implementation. Different specifications
to which a single implementation conforms mayv be trivially different syntactic vari-
ants that specify the same hehavior. Different specifications may specify disjoint
sub-behaviors of the total behavior implemented by a single conforming implementa-
tion. Finally. different specifications may deseribe the same implemented behavior in
substantively different wavs.

It impste.a) holds. then there mnst be some legitimate wav of explaining how ¢
implements o Such an “explanation”™ must address how the langnage-specific strue-
tural (syntactic) requirements of ¢ may be satisfied by the structure of ¢ and how the
behavioral (semantic) requirements of o mayv be satisfied by the operations defined by
. While providing an explanation of how ¢ conforms to a is essential for Justifving
a claim that imps(e.a). such a claim is either valid or invalid independent of any
particular explanation.

Finallv. note that imps(c.a) does not imply that o € etx(¢). That is. an imple-
mentation need not refer to a specification that it implements. From a desien and
implementation perspective. there are both advantages and disadvantages to having
an implementation conpled to a specification to which it conforms. We will discuss
these issues in Secetion 1.3,

20

Figure 2.6: Specification Conformance And Subsets

2.3.2 Specification Extension

We now consider a conformance relationship between two specifications in Al.
As discussed above, for imps(c, a) to hold, all behavior described by a must be im-
plemented by ¢, but ¢ may also implement additional behavior left unspecified by
a. Thus ¢ may implement a and also implement other specifications that describe
more or fewer requirements on implementations than a. Consider a specification,
say ai, that places certain structural and behavioral requirements on all conforming
implementations. Now assume another specification, say ao, specifies the same be-
havior as a;, plus some additional behavior not specified by a;. In this situation any
concrete instance that implements ay should also implement a;, but there may be
implementations of a; that do not implement ay. Figure 2.6 depicts this situation.

On the left side of Figure 2.6, the solid arrows from elements of C'I to elements of
AT represent pairs in the imps relationship. That is, ¢; implements a; and both ¢
and ¢, implement as, but ¢; does not implement as. The property that all concrete
instances implementing a, also implement a; (in this example) is depicted on the right
side of Figure 2.6. The dashed gray ovals inside of B represent subsets of B and the
double-ended gray arrows between B and P(B) point to two different representations
of the same set of behaviors. The larger oval represents S(ay), the set of all behaviors
that satisfy the behavioral requirement specified by a;. The smaller oval represents
S(ay), the set of all behaviors that satisfy the behavioral requirement specified by as.
In the figure, S(ay) is depicted as a subset of S(a;). Therefore, all concrete instances
that implement the behavior specified by as (such as ¢;) also implement the behavior

27

Al

CI

Figure 2.7: The exts Relation

specified by oy NMore simply stated. all conerete instances that implement a, also
implement «.

In the sitnation deseribed above, we mayv sav that specification as “conforms to”
specification oy, This notion of conformance is similar to that of beliarvioral subtyping
TWO We define this relation between two specifications. exts: AT x A7, as follows:

exts(u,.ay) = S(a,) C S(a,) (2.3)

The predicate exts(a,. ay) may be read as “specification a, extends specification
a," . Figure 2.7 summarizes all of the information explicitly shown in Figure 2.6.
The dashed arrow from ay to oy depicts the exts relationship between these two
specifications,

If exts{o..ay) holds. then the behavioral requirements specified by o, may be
viewed as an extension of the hehavioral requirements specified by a,. This does nof
mean that the (svimbolic) content of . is an extension of the content of ay. although
that might he the case. Just as ¢ need not refer to o for imps(c. a) to hold. v, need
not refer to o in order for exts(w,. a,) to hold. Nevertheless. in order to justify that
extsla,. ay) holds. there must be some way of explaining how the hehavior specified
by a covers all of the hehavior specified by .

The exts relation is reflexive (any specification extends itself) and transitive. It
is not. however, antisvinetric (as is subset inclusion) since two different specifica-
tion components may specify identical hehavioral requirements and thus extend each
other.

A useful property that follows directly from the definitions of imps and exts is:

imps(c, az) A exts(ag, a;) — imps(c,a;) (2.4)

The imps relationship between ¢y and a; shown explicitly in Figure 2.6 is not
shown in Figure 2.7, but follows immediately from the above property.

There are three basic ways in which the behavior of a specification component
might be extended: specialization, generalization, and augmentation. If a, strengthens
the post-conditions of one or more of the operations specified by a; and exts(az,a1),
then a, specializes a;. If ay, weakens the pre-conditions of one or more of the operations
specified by a; and exts(as, a1), then ay generalizes a,. If ay specifies operations not
specified by a; and exts(as, a;), then a; augments a;. Any combination of these three
forms of extension (including none of them) may apply to two specifications related
by the exts relation.

As a simple example of these three forms of extension, consider the behavioral
interface specification for a bounded integer bag with two operations, Insert and
Remove, and a maximum size of 10 integers®. A bag is like a set except that a bag
may contain more than one occurrence of the same element. The pre-condition for
Insert would require that the bag contain fewer than 10 integers. The post-condition
of Insert would require that the bag contents after completion of the operation be
the same as that beforehand, except that it should contain an additional integer of
the value inserted. The pre-condition for Remove would require that the bag contain
at least one integer. The post-condition of Remove would require that the contents
of the bag after completion of the operation be the same as that before hand, except
that it should contain one less integer of the value removed — some integer contained
in the bag prior to execution of the Remove operation. This is a non-deterministic
specification in that it does not specify which element of the bag is removed.

One specialization of this bag specification would be a specification that requires
integers to be removed in a particular order relative to their insertion order or value.
For example, a bounded integer stack specification might specify behavior identical
to that specified by the bag except that the value of the integer removed must be the
same as the value of the integer most recently inserted. Thus the post-condition on
the stack operation corresponding to Remove would place a compatible, but stronger
requirement than that of the bag on all conforming implementations. A generalization
of the bag specification would be one that requires the same behavior except that the
bag may hold up to 20 integers. In this case, the pre-condition for the operation
corresponding to Insert would place a compatible, but weaker requirement on all
conforming implementations. Finally an augmentation of the bag specification might
specify the same requirements except that it also requires an additional operation that
returns the number of elements currently in the bag. In each of these three examples,

6The bag specification described here was selected for simplicity and should not be interpreted
as a good interface design.

29

anv implementation that satisfies the requirements of the extended specification also
satisfies the requirements of the original bag specification.

As discussed in Section 2.1.10 a common reason for changing the hehavior of a
software system is to add new functionalitv. As we disenss in Section 3.5. the aue-
mentation form of specification extension is particularly useful for modeling extensions
to component functionality,

2.4 Dependency Relationships

The three conformance relations defined in Seetion 2.3, imps. exts. and exti. are
defined in terms of the semantic properties of components. These relations model
useful behavioral relationships between components. The fixed dependencey relation
deseribed in Section 241 is defined in terms of the syntactic properties of components
and i~ completely orthogonal to the conformance relations. This relationship models
the wsnal notion of component coupling applied to both implementation and specifica-
tion components. The deferred dependeney relation deseribed in Section 2.4.2 models
“behavioral dependencies™ which directly support component-level maintenance and
require the introdnction of conerete templates.

2.4.1 Fixed Dependencies

In Section 2.2 we noted that a unit (a component or math modnle) mayv be defined
direetly or indirectly in terms of a finite mumber of other components. Furthermore.
onr definition of a “component™ requires that all direct dependencies be part of a
component’s context. Using the ctx function (Equation 2.1) we now define the general
conpling relation over all components. The relation uses:C' x €', is defined recursively
as follows:

uses(cy.) =)=V
¢y € ext(ey) Vv (2.5)

e € ext(e)) | uses(r.)

The predicate uses(ey.¢,) mav be read as “component ¢ uses component ¢, In
the first disjunct of the definition. ¢; and ¢, denote the same component (not two
different components with the same content). In the second case. ¢, depends directly
on . Inthe recursive case (which is not mutually exclusive with either of the first
two cases) ey depends divectly on some component that depends either directly or
indirectly on (or 1s) ey,

The uses relation is reflexive and transitive. It is refloxive to model the possibility
of fearures defined within a component being defined in terms of other features defined
within the same component. A component may not be a member of its own context

30

Al

i

Bl Cl.

a4

DI[o |El[O

Direct Dependencies A Sub-graph of uses

Figure 2.8: Concrete Instances Forming A Component-Based System

since ctx is used to express a component’s external dependencies. However, if ctx
were a reflexive relation, then uses simply would be the transitive closure of ctx.
Note that two components may deperid mutually upon each other (e.g., uses(c, cz2)
and uses(cy,¢;)) may both hold) as long as components ¢; and ¢, are well-formed
according to the rules of L. 4

If ¢; uses ¢, then component ¢; in some way depends upon component co. If ¢;
and ¢, are both concrete instances, then operations implemented in ¢; might invoke,
either directly or indirectly, operations implemented in co. If c; is a specification,
then ¢; may depend on all or part of ¢, to explain behavior that it uses, extends, or
implements (if ¢; is an-implementation). To fully understand and justify properties
about the behavior described (implemented or specified) by component c, a software
engineer may need to understand the behavior described by all other components
(both implementations and specifications) used by c.

Once a component-based system has been fully integrated, the behavior of the
system depends only on concrete instances. We can characterize the inter-component
dependencies in a fully integrated system solely in terms of the uses relation restricted
to concrete instances. Figure 2.8 shows two views of a simple component-based system
composed of five concrete instances: A1, B1, C1, D1, and E1, all members of C'I. On the
left side of Figure 2.8, the arrows between components represent direct dependencies.
Thus we may conclude that that ctx(A1) = {B1, C1}, ctx(B1) = {D1, E1}, and ctx(C1)
= {E1}. Component Al corresponds to a “main program” and components D1 and
E1 are components implemented entirely in terms of built-in features of L. The right
side of Figure 2.8 shows the sub-graph of the uses relation induced by just these five
concrete instances. An arrow from component ¢; to component ¢, indicates that the
predicate uses(cy, ¢o) holds.

31

If uses! ey eu) holds. then component ey is “hard wired™ to component ¢,. There is
a fired dependency of ¢ on ey that cannot be changed.™ Anv svstem using ¢; must also
use o, as a result of this dependeney. If a maintainer wishes to replace ¢, with another
compatible component. then ¢ must also be replaced sinee it depends specifically on
oo As aresults components with fixed dependencies on other implementations. like
A1. B1. and C1 in Figure 2.8. do not support component-level maintenance. In the
following section we address this problem.

2.4.2 Deferred Dependencies

As we discussed in Section 2.1.30 in order to foster substitutability. components
must be desicned and implemented to conform to behavioral interfaces and also to
requine use of any components that conform to those interfaces. Consider again the
component relationships depicted in Figure 2.2, For now. assume that the element
tvpe of list.stack. and quene has heen fixed. say to tvpe Integer. (We will consider
the more general case without this assumption later in this section.) If we model the
(Integer) list implementations on the hottom of the figure as components in C'7 and
the (Integer) list interface in the center as a specification in A7 then the “conforms
to” relationship shown may be modeled by the imps relation defined in Equation 2.2,
The issue we address in this seetion is how to model the “requires an implementation
of " relationships shown on the top of Figure 2.2.

It wonld be convenient to nse elements of €7 as the models for all implementation
components. However. implementations with dependencies expressed in terms of
a behavioral interface specification are different in kind from implementations that
have fixed dependencies. To understand the difference. consider the five components
shovn in Figure 2.9 Assume that the two list implementations at the bottom of
the fieure. IL1 and IL2. are implementations in C'7 with no external dependencies.
That is. they only use operations and tvpes provided directly by L (including. in
this example. type Integer). Assume that the behavioral interface depicted in the
center of the fignre, IL. is a specification in A7 and that both list implementations
conform to this specification as indicated by the arrows labeled imps. The stack
implementation depicted in the upper left corner of the figure. IS1. directly uses list
implementation IL1 as shown. We mayv model I81 as a component in C'T with a
corresponding behavior S(I81) defined in terms of S(IL1).

The component labeled ISTL in the upper right corner of Figure 2.9 is an Integer
stack implementation that mayv use any list implementation that conforms to IL. We
sav that IST1 has a deferred dependency on an implementation of IL or that it
“needs™ an implementation of IL. (We define the needs relation helow.) Assume
that the content of IST1 is identical to that of IS1 except that where IS1 names list

"Stuee the set of all conerete instances CF s fixed in onr model. “making a change to ;" is
equivalent to shifting attention to another component in C'7 that mav or may not depend on ..

32

~Integer Stack - “ Integer Sta?k"-?:

Using Integer List | IS1 ‘Using Any List " | I8T1
'Implemcntation 1= H I}mplementatidn“i"
needs
Integer List
uses Behavioral IL
Interface
2 ::Integer:List»:' _f i i Ihtégéf List :
Implementation 1 Ll Implementation 2 1L2

Figure 2.9: Fixed and Deferred Dependencies

operations specifically provided by IL1, IST1 refers to list operations as specified in
IL. (We will examine the details of how a component with deferred dependencies may
be encoded in specific programming languages in Chapters 4 and 5.) The problem
with modeling IST1 as a concrete instance is that this component does not describe
a single component behavior in B. IST1 characterizes a set with as many different
stack behaviors as there are list behaviors in S(IL). If we select IL1 to satisfy IST1’s
need for an implementation of IL, then we expect the resulting behavior to be the
same as that described by IS1. If we select IL2 instead, then the resulting behavior .
may be different. ' '

We model implementation components with deferred dependencies as members of
the set C'T of concrete templates introduced in Section 2.2.1. A component with a
deferred dependency may be viewed as a template for generating concrete instances.
We model the meaning of a concrete template as a function from one behavior in B
to another behavior in B. The semantic function S (restricted to the domain CT)
maps each concrete template ¢t € CT to a function in the set of all functions from B
to B. The domain of the function S(t) is the subset of B defined by the specification
a € AI used to express the deferred dependency of . The range of S(¢) is the subset
of B that includes the behaviors corresponding to all concrete instances that may be
generated by instantiating ¢t with any concrete instance that implements a.

The relation needs : CT x AI models a deferred dependency between a concrete
template and an abstract instance. The relation is defined as follows:

33

needs(f. a) = domain(S(1)) = S(u) (2.6)

The predicate needs(f. o) may be read as “conerete template + needs an imple-
mentation (any implementation) of abstract instance o7, For anv ¢ € (I for which
imps/c. o) holds. the result of instantiating £ with ¢ is a conerete instance ¢ for which
uses!c’.¢) holds. That is. the conerete instance generated by the instantiation uses
the conerete instance that was chosen to instantiate the concrete template.

Ficure 2,10 shows how the components and relationships in Figure 2.9 (except for
IL2) are modeled. IST1. the stack implementation that needs anyv conerete instance
that implements IL. is modeled as a conerete template in CT. ISTLs deferred depen-
deney on an implementation of IL is indicated by the arrow labeled needs from IST1
in C'T to IL in A7, The semantic function S maps IST1 to the element S(IST1) in the
set of functions from 13 to . Sinee IST1 needs an implementation of IL. the domain
of the function S(IST1) is S(IL) which is depicted by the dashed oval within B. Since
the list implementation ILT implements the list specification IL. IL1 mayv be used to
fulfill IST1's requirement. Figure 2.10 convevs this on the left side with the needs
and imps relationships and on the right side by showing the behavior S(IL1) in the
subret SCIL) of . When the function S(IST1) is appliced to the hehavior S(IL1) the
result is the behavior S(IS1) as depicted by the dashed line from S(IL1) to S(ISs1).
Thus the behavior implemented by the conerete template IST1 instantiated with the
concrete instance IL1 is the same as the behavior implemented by 181 with its fixed
dependeney on IL1.

The final aspect of the model is the meaning of abstract templates. We model the
weaning of an abstract template as a function from the set B of behaviors to the set
P the power set of behaviors, For an abstract template v € AT and a concrete
instance ¢ € C'1. there is an abstract instance o € AT such that S(u)(S(¢)) = S(n).
Thus the meaning of an abstract template mav be viewed as a function that. when
applied 1o the meaning of an implementation. produces the meaning of a specification.
Thisis a somewhat different model of abstract templates than that defined by ACTI®,
Nevertheless: this view of abstract templates is sufficient for our needs as presented
in Chapter 3.

Figure 2,11 shows all of the spaces defined within the model including the set
of abstract templates AT and the set of mathematical theory modules M. In this
ficure. the abstract template LT is a specification of a list just like IL. except that
it i~ parameterized by the tyvpe of item contained in the list. That is. LT specifies
a list template rather than an integer list. The components I and I1 represent an
intecer type specification and implementation. respectively. (Although these are not
depicted in Figure 2.11. IS1 uses I1. IL1 uses I1. IST1 uses I1. and IL uses I1.) In
this situation. the behavior specified by instantiating LT with I1 is the same as that

Yl the ACTI model. an abstract template is a function from an abstract instanee to another
abstract instance. [Edw0i, 1.8

31

Figure 2.10: Concrete Templates And The Needs Relation

35

imps imps(c.a) = S(¢) € S(un)

exts | exts(a..ay) (2) C S(ay)

uses uses(ey.) =,V

e 6 cxt(c))Vv

Jde € ext(e)) | uses(c.)
domain(S(1)) = S(u)

il

1]

il

needs | needs(f.a)

Table 2,10 Summary of Modeled Component Relations

specified by IL. This instantiation of LT is depicted in Figure 2.11 as the fanetion
application arrow traveling from S(I1) in B through the function S(LT) to S(IL) in
P

Fieure 2,11 also shows that the integer specification. abstract template I, depends
on the mathematical integer theory deseription ITHRY. The interpretation of ITHRY.
ZVITHRY). is shown simply as a point in V. All of the components (strings in L) shown
in the ficure rely either divectly or indirectly on ITHRY (these uses relationships are
not shown to reduce clntter). Thus, each component’s meaning. shown as a point or
function (a set) in V. is constructed. in part. from the set Z(ITHRY).

2.5 Chapter Summary

In thix chapter we have developed a set theoretic model of behavioral relation-
ships between software components. The purpose of this model is to describe the
behavioral relationships between software components needed to support component-
level maintenance. Secetion 2.1 motivates the need for component-level maintenance
and relationships that express behavioral conformance and behavioral requirements.
Section 2.2 deseribes our component model. which includes abstract and concrete
templates (parameterized specifications and implementations). abstract and concrete
mstances (non-parameterized specifications and implementations). and mathematical
theory modules.

The model defines the meaning of cach conerete instance as an element in the set
B of “hehaviors™. The meaning of an abstract instance is defined as a set of hehaviors.
a member of the power set of B. PB. The meaning of a conerete instance is defined as
a function from B to B. The meaning of an abstract template is defined as a function
from B 1o PB.

In Section 2.3 we defined imps. a conformance relationship between conerete
and abstract instances. and exts. a conformance relationship between two abstract

36

Figure 2.11: The Big Picture

37

instances. In Section 2.4 we defined the fixed dependency relation uses and the de-
ferred dependencey relation needs. Table 2.1 lists these relations and their definitions.

CHAPTER 3

A USEFUL SET OF SOFTWARE COMPONENT
RELATIONSHIPS

In this chapter we define a useful set of software component relationships based
on the model of components and relations developed in Chapter 2. We do not claim
that these are the only useful relationships between components nor do we claim that
they are ideally suited to all approaches to software development. However, as we will
explain, the relationships presented in this chapter are well-suited for building and
maintaining component-based software systems. In this chapter we also introduce the
graphical notation of component coupling diagrams used to depict each relationship
described. '

This chapter presents a sequence of simple example components to demonstrate
the relationships described. Section 3.1 introduces a specification and implementation
notation used to encode example components. Section 3.2 describes the dependency
relationship uses, corresponds directly to the uses relation described in Section 2.4.1.
Section 3.3 describes the behavioral relationship implements which is based on the
imps relation described in Section 2.3.1. Section 3.4 describes the deferred depen-
dency relationship needs which is based on the needs relation described in Sec-
tion 2.4.2. Section 3.5 describes the behavioral relationship extends which is based
on the exts relation described in Section 2.3.2. In Section 3.7 we provide a summary
of the relationships defined in this chapter.

3.1 Component Notation

The component relationships described in this chapter are language-independent
in the sense that they are not tied to specific language mechanisms. The relationships
reflect design-level information that may be encoded in various ways with various
implementation and specification languages. Nevertheless, some languages provide
much better support than others for encoding these relationships. Chapter 4 discusses
language support for encoding these relationships.

39

I this chapter we present examples of components encoded in a enustom notation
with specification elements similar to those of the RESOLVE language and imple-
mentation elements similar to those of Ada. The notation has been simplified (with
respect to RESOLVE and Ada) in order to shorten example code and minimize the
need to address details not divect]y relevant to the issues discussed in this chapter.
Some of the simplifications involve name space control (nse of unqualified versns quali-
fichidentifier names). operation parameter mode specification. foatures built into the
lancuage. implementation-level encapsulation. object initialization and finalization.
and minor svntactic details (sueh as the use of semicolons). The components encoded
in RESOLVE/Ada95 shown and discussed in Chapter 5 address these and other is-
stues with specific solutions hased on the capabilities and limitations of RESOLVE
and Ada.

Asin Chapter 20 we use the term “component™ to refer to a software module that
deseribes either an implementation of behavior or a specification of hehavior. Fur-
thermore the description of behavior may he parameterized (a template component)
or not {an instance component), We continne to use the terins “conerete instance” .
“conerete template”, sabstract instance”, and “abstract template” to refer to the four
kinds of components which resnlt from this categorization. In the examples, we will

prefix each component name with the string “CI.". “CT_". “AI_". or "AT." to indicate
it~ classification as one of these four kinds of components. Note that this is a naming

convention only and not part of the notation syntax.

In the notation used in this chapter. both specification components (abstract in-
stances and abstract templates) and implementation components (conerete instances
and conerete templates) are encoded with the same basic format. Eacl Ccompo-
nent has: a header. an optional context section. an optional auxiliary scction.
an interface section. and a terminal end delimiter. The header hegins with either
specification or implementation followed by the component name which option-
allv - may be followed by extends clauses in specifications and implements clauses
in implementations. The context section lists all direct fixed dependencies encoded
with uses clauses followed by all deferred dependencies encoded with needs clanses.
The deferred dependencies constitute the component parameter section. If a com-
ponent has no external dependencies it is constructed solely in terms of elements
built into the Tanenace then its empty context section mav be omitted.

The auxiliary section in a specification component may include definitions that
describe the behavior specified in the interface section. In addition to specification-
only definitions. the auxiliary section of an implementation component also may
inchude local definitions of program types. operations. and variables used to describe
the behavior implemented in the interface section. That is. any program tyvpes,
operations. and variables defined in the auxiliary section mayv he referenced only
within the remainder of that section and in the following interface section. The
auxiliary section may be omitted if it is empty. The interface section provides

40

specification AI_Flipflop
interface

type Flipflop is modeled by BOOLEAN
exemplar ff
initially ff = FALSE

procedure Toggle (f : Flipflop)
ensures f = NOT #f

function Test (f : Flipflop) : Boolean
ensures Test = f

end AI_Flipflop

Figure 3.1: Abstract Instance AI_Flipflop

a specification or implementation of program behavior in terms of program types
and operations. Program type, operation, and variable definitions in the interface
section may be made available for use by other components.

Figure 3.1 shows a very simple abstract instance named AI_Flipflop. This ab-
stract component provides a model-based specification [Win90] for a two-state device,
a flip-flop, for which the current state may be toggled and tested (queried). The
context and auxiliary sections are not shown since this component only uses built-
in types and operations. The interface section includes definitions of the abstract
data type Flipflop and two associated operations Toggle and Test.

The examples in this chapter assume that all components have visibility over the
components CI_Boolean_1 and CI_Integer.1 that define the scalar program types
Boolean and Integer. These types and their associated operations (e.g., or for
Boolean and + for Integer) may be used without any reference in the context section
to the components in which they are defined. Thus Boolean and Integer may
be considered as built-in program types of the language. As in most programming
languages, program types are used to ensure that program variables are used in legal
contexts.

The program types Boolean and Integer are modeled by the math types BOOLEAN
and INTEGER, respectively. The math types BOOLEAN and INTEGER are specified in the
math theory modules MI_Boolean_Theory and MI_Integer_Theory. These two math
theory modules are also built-in theories of the language in the sense that the math
types and math operations that they define (e.g, OR for BOOLEAN and + for INTEGER)
may be referenced without mentioning their defining math theory modules in the

41

context section. Math theory modules provide formal specification of mathematical
theories that may be nsed to mathematically model program behavior. Theyv serve
the same role as math modules in RESOINE [WOZ91] and as fraits in the Larch
Shared Laneuage [GHWS5L Note that we do not consider math modules to be
software “components”™ since they do not deseribe program behavior and their use
in no way effects the operational behavior of component-based svstems. To help
distingnish between program and math tvpes and operations. we use all upper case
identifiers for math types and operations and mixed case identifiers for program tvpes
and operations. Common operator symbols such as “+" and ==" are exceptions and
may be distinguished by context.

In the interface section of AI_Flipflop (Figure 3.1) program tyvpe Flipflop is
declared by defining its mathematical model to be the math tvpe BOOLEAN. Thus. the
abstract state space used to model a flip-flop is the set {FALSE. TRUE}. The exemplar
clanse states that the identifier ££ will represent a prototvpical object for specifving
properties of all objects (values of variables) of type Flipflop. The initially clause
states that the initial abstract state of a Flipflop object is FALSE.

The operation Toggle is specified using a relational procedure signature that
takes a Flipflop ohject asits single areument. Execution of a procedure may change
the abstract values of all of the operation’s arguments. The pre-condition of Toggle.
expressed by a requires clause. is not shown since it places no restrictions on the
states from which Toggle may he meaningfully invoked (a flip-flop mav be toggled
from either state). The post-condition of Toggle. expressed by the ensures clanse.
specifies that after execution of Toggle the abstract state corresponding to the con-
crete state of the argument is the negation of the abstract state prior to execution.
In requires and ensures clauses. formal parameter identifiers (£ in this example)
denote objects of the math type used to model the parameter’s program tyvpe. In
an ensures clanse. an argument prefixed by “#7 denotes the valne of the argument
prior to execution of the operation being specified. Thus Toggle changes the flip-flop
from one state 1o the other state,

The operation Test is specified using a function signature that takes a Flipflop
object as its single argument and returns a value of the concrefe program tvpe
Boolean (defined by the conerete instance CI_Boolean_1). Execution of a function
may not change the abstract value of any of the operation’s arguments. The assertion
that fanetion argument values do not change is an implicit conjunct of a function’s
ensures clause. Like Toggle. Test has no pre-condition. The ensures clause of
Test specifies that the value returned by Test (denoted by Test) corresponds to the
abstract value of Test's argument. Thus Test may be used to query the state of the
flip-flop. As a behavioral interface specification. AI_Flipflop requires all conforming
implementations to provide (at least) a representation for type Flipflop (initialized
toa value representing FALSE). an implementation for Toggle. and an implementation
for Test.

12

implementation CI_Flipflop_2
interface

type Flipflop is represented by
state : Integer range 0 .. 255 := 0
end representation

procedure Toggle (f : Flipflop) is
begin
f.state := (f.state + 1) mod 256
end Toggle

function Test (f : Flipflop) : Boolean is
begin
return ((f.state mod 2) = 1)
end Test

end CI_Flipflop_ 2

Figure 3.2: Concrete Instance CI_Flipflop 2

Figure 3.2 shows a simple concrete component named CI_Flipflop_2. This com-
ponent provides one of infinitely many possible implementations of the flip-flop ADT
specified by AI_Flipflop. By convention we will suffix implementation component
names with an underscore followed by a number used to distinguish between different
implementations of the same specification. For example, the name “CI_Flipflop_2”
may be interpreted as the second concrete instance implementing AI_Flipflop. (As-
sume that CI_Flipflop_1, not shown, is the obvious implementation using a Boolean
for the representation of Flipflop.) The structure of CI_Flipflop_2 is very similar
to that of AI_Flipflop shown in Figure 3.1. As with AT Flipflop, the context and
auxiliary sections are empty and not shown since only built-in types and opera-
tions are used within the component. The interface section includes a definition
of the concrete program type Flipflop and implementations of the two associated
operations Toggle and Test.

The data representation of type Flipflop in CI_Flipflop.2 consists of a single
representation component, labeled state. The state component is an object of the
concrete type Integer (as defined in CI_Integer_1) restricted to the interval [0,
2551 and having an initial value of 0. The operation Toggle increments the value of
its argument’s state component by one each time it is called unless the value is 255

43

in which case it is reset to 0. The := (assienment)”, + (addition). and mod (modulus)
operations are provided by CI Integer_1. The operation Test returns the Boolean
valne True if the valne of its argnment's state component is odd. otherwise it returns
False.

3.2 The uses Relationship

The uses relationship deseribes the fixed syntactic dependency of one component
on another. The uses relationship may be defined informally as follows:

Component ¢y uses component Cy if and only if the meaning of ¢ de-
pends either directly or indirectly on the meaning of €.

The uses relationship is modeled by the uses relation defined in Equation 2.5 in
Chapter 2. 1f component €'y uses component Cty direetly. then Cy is in the context
of Cpand entities defined in €y mav be used in the definition of ¢y, If component
'y uses component Cy indirectly. then Cs is not in the context of (1. but is in the
context of some component that () uses. In both cases. the behavior either specified
or implemented by 'y depends on (is defined in terms of) the hehavior specified or
implemented by (.

The uses relationship is very important from a maintenance perspective. If com-
ponent € uses component Cy. then any modification to ¢ may alter the behavior
deseribed by € Alsoin order to fully understand a component. it mav be necessary
to understand aspects of all other components that it uses. The uses relationship is
often viewed as a cclient /supplier” relationship [NMey88. p. 73] [Boo9 1. p. 101]. If ¢
uses (' then Cpis a client of Cy which is a supplier to €';. The uses relationship
gives Oy vixibility 1o elements defined in Cy and elements defined in components that
"y uses. Depending on the language mechanisms used. 'y may or mayv not have
visibility to all features defined by (5 and the components it uses.

The most familiar form of uses describes coupling between two conerete instancoes.
This relationship should be familiar to anvone who has developed software using a
procramming language that supports separately compiled modules. These languages
bave import or inclusion mechanisms that encode a direct uses relationship between
two modules. Examplesinelude the with context clause in Ada. the import statement
in Modula-2. and the #include preprocessor directive in C+4. In the notation
presented in this chapter. a direct uses relationship is encoded with a uses clanse!?
in the context section. For example. a conerete instance built specifically using
CI.Flipflop.2 wonld include inits context section the clanse “uses CI_Flipflop.2”.

“Here we consider 1= as an operation defined on type Integer. not as a program statement as
in Ada,

"'Note that in Ada. the use elanse serves the different purpose of allowing identifiers alreads in
scopeto be referenced without using their fully qualified names.

41

; Cl_‘_fB.odvlléanj.

Figure 3.3: The uses Relationship

The uses relationship also may describe a fixed dependency of one specification
on another specification, of an implementation on a specification, or of a specifica-
tion on an implementation. Figure 3.3 shows a component coupling diagram (CCD)
that graphically depicts the (implicit) uses relationship between AI_Flipflop and
CI_Boolean.-1. In CCD’s, abstract components (both instances and templates) are
depicted as clear boxes with rounded corners. Concrete components (instances and
templates) are depicted as shaded rectangular boxes. The component name is shown
within each box. The thick solid arrow from AI_Flipflop to CI_Boolean._1 represents
the uses relationship between the two components. We use thick arrows to depict
dependency (coupling) relationships. Note that typically we will not show implicit
dependencies on built-in components in CCD’s as shown in this example.

3.3 The implements Relationship

The implements relationship is a behavioral relationship between a concrete com-
ponent and an abstract component. The implements relationship may be defined
informally as follows:

Concrete component C' implements abstract component A if and only if
C provides an implementation of all behavior specified by A.

The implements relationship is a conformance relationship between C and A
modeled by the imps relation defined in Equation 2.2. However, imps describes
a relationship between instance components only. We extend the definition of im-
plements to include implementations that are templates. In this extended view,
implements is an overloaded term for three distinct relationships:

e If C is a concrete instance and A is an abstract instance, then the claim that
C implements A is an assertion that imps(C, A) holds.

45

(Al_Flipflop j
A

implements

CI_Flipflop_2

Figure 3.1 The implements Relationship

o If ("is a conerete template and A is an abstract instance. then the elaim that ¢
implements .1 is an assertion that for any instantiation C7 of C'. imps(C”. 4)
holds.

o If ("is & conerete template and A is an abstract template, then the elaim that
(" implements .1 is an assertion that for any instantiation C7 of C' there exists
some instantiation A" of A, such that imps(C”. 4’) holds.

We will disenss examples of cach of these three cases in this chaprer. In this
section we disenss the first case. the implements relationship between a concrete
instance and an abstract instance. In Section 3.0 we present examples of the other
TWo cases,

A~ an example of the implements relationship. consider the abstract instance
AI_Flipflop shown in Fignre 3.1 and the conerete instance CI_Flipflop_2 shown
in Fieure 3.20 We claim that CI_Flipflop.2 implements AT Flipflop. That is.
anvwhere that there is a requirement for the behavior specified by AT_Flipflop. the
implementation CI_Flipflop.2 may be used to satisfv that requirement. This rela-
tionship is graphically depicted in the CCD in Figure 3.4, The thin solid arrow from
CI.Flipflop 2 to AI_Flipflop represents the implements relationship between the
two components. We nuse thin arrows to depict behavioral relationships which are not
dependeney (coupling) relationships.

Aside from its snggestive name and obvious structural similarity, the content of
CI_Flipflop.2 as shown in Fignre 3.2 contains no statement of its purported rela-
tionship to AT Flipflop. If we assmme that CI Flipflop_2 was specificallv designed
to implement AI_Flipflop. then it seems natural that this information should be
recorded in the source code of CI.Flipflop_2 to help explain the intended behavior
of the component 1o prospective maintainers. Furthermore. information explaining
lrow CI_Flipflop_2 may be viewed as implementing AI_Flipflop would also be use-
ful to anyone attempting to justify the claim that the implements relationship reallyv
does hold between these two components, ’

16

implementation CI_Flipflop_3
implements AI_Flipflop

interface

type Flipflop is represented by ‘
state : Integer range 0 .. 255 := 0
end representation
exemplar ff_rep
correspondence ff = ((ff_rep.state MOD 2) = 1)

procedure Toggle (f : Flipflop) is

begin
f.state := (f.state + 1) mod 256
end Toggle
function Test (f : Flipflop) : Boolean is
begin
return ((f.state mod 2) = 1)
end Test

end CI_Flipflop_3

Figure 3.5: Concrete Instance CI_Flipflop_3

Consider the concrete instance CI_Flipflop-3 shown in Figure 3.5. The only
differences between CI_Flipflop.2 and CI_Flipflop_3 are the implements clause
in the header and the exemplar and correspondence clauses in interface section
of CI_Flipflop_3. Nomne of these three additions affects the operational behavior
described by CI_Flipflop.3. Thus CI_Flipflop-3 describes an implementation of
behavior identical to behavior implemented by CI_Flipflop_2.

The implements clause in the header of CI_Flipflop.-3 explicitly records an
intended implements relationship with AT Flipflop. The exemplar clause and
correspondence clause in CI_Flipflop_3 explain an intended correspondence be-
tween the representation states, modeled by INTEGER, and the abstract states, modeled
by BOOLEAN. The identifier MOD names a math operation for integer modulus (MOD is
defined in MI_Integer _Theory). The name f_rep.state denotes the abstract value
corresponding to the representation-level value of the state field of an object of type
Flipflop. Since the state field is an object of program type Integer, its values
correspond to abstract values of math type INTEGER. The correspondence defines the
nﬂaﬁon.{<O,FALSE>, <1,TRUE>, ..., <254,FALSE>, <255,TRUE>}1napphu;even
representation values to the abstract state FALSE and odd values to TRUE.

47

The additional information encoded in CI_Flipflop_3 serves several useful pur-
poses. The statement that CI_Flipflop 3 implements AI_Flipflop “officially”
records desien intent of the implementer of CI_Flipflop_3 and tells a potential main-
tainer (or a library browsing tool) where to look for a deseription of the requirements
this component must satisfv. The implements clause also makes explicit the obliga-
tion that CI_Flipflop_3 must conform structurally and semanticallv to AI_Flipflop
when used as an implementation of AIFlipflop. For example. the implements
clanse shown in Fignre 3.5 might require a compiler to check for the structural con-
formance of CI_Flipflop 3 to AI.Flipflop when CI_Flipflop_3 is compiled. Both
CI_Flipflop.2 and CI_Flipflop.3 conform structurally to AT_Flipflop since thev
provide a representation for the type Flipflop and operations with names and pa-
rameter profiles that match those of AI_Flipflop.

Within a library of “certified™ components. the implements clause (perhaps in
object code form) also might be interpreted as a statement that the implements
relationship has been justified to whatever degree required. In this case. only con-
crete components that have been certified to conform structurally and semantically
to the specifications which they claim to implement would be entered into the library.
Officially recording justified implements relationships elsewhere. however, provides
a more flexible solution. For example, if justified implements (and extends) rela-
tionships are recorded in a component library database, new relationships mayv be
added and existing ones “revoked™ withont modifving any component content. Such
a database of relationships would he useful for component library browsing as well as
for use by component integration tools.

The claim that a conerete component implements an abstract component is an
assertion that the conerete component is a correet implementation with respect to
the specification provided by the abstract component. The correspondence clause
provides information necessary for formally verifving the correetness of an ADT and
thus for justifving that the implements relationship holds hetween a component that
implements a type and a component that specifies the tvpe. The relation expressed
by the correspondence clause is also called an abstraction function[LG86. p 70, a
retricec funetion Jon90. p 182] and more generally an abstraction relation[S\WOOT].

In short. the correspondence clanse provides a wav to compare the effect of
executing operations on the concrete representation state deseribed by an implemen-
tation component. with the effect of exeenting the same operations on the abstract
state described by a specification component. In order for an implementation to
be considered correct. any conerete state reachable from a legal sequence of (zero
or more} operations mnst correspond to an abstract state reachable from the same
sequence of operations. Note that the initially clanse (as shown in Figure 3.1)
ensnres that the conerete state of an object corresponds to its specified abstract state
prior to execution of any operations that affect the state of that object. This serves
as a basis for an induction argument stating that after an arbitrarily long sequence

AN

o

|
of operations, the concrete state of an object will still correspond to an appropriate
abstract state as specified. The details of formally justifying the implements rela-
tionship are beyond the scope of this dissertation and have been discussed elsewhere
in terms of formal verification of ADT’s [Hoa72, LG86, Jon90, EHO94].

AI Flipflop, CI_Flipflop_2, and CI_Flipflop_3 are so simple that the claimed
implements relationships appear easily justified in both cases. But useful software
components tend to be much more complex than these simple examples. In general,
the process of convincingly justifying that a concrete component implements an
abstract component may require a great deal of effort and even creativity. By ex-
plicitly stating the correspondence between an implementation’s data representation
and a model used to specify desired program behavior, the component implementer
documents a critical aspect of how the behavior described by an implementation may
be viewed as corresponding to the behavior described by a specification.

A component implementer may use the implements relationship to state how
an implementation component, possibly in object code form, should be viewed by
prospective clients. By claiming that concrete component C' implements abstract
component A, the implementer is claiming that A serves as an appropriate simplified
description or “cover story” for behavior implemented by C'. With CI_Flipflop.3,
the abstract state space modeled by BOOLEAN is different and simpler (much smaller)
than the concrete state space of INTEGER modulo 256. In this case, AI_Flipflop
presents a simpler conceptual view or “mental model” of flip-flop behavior than that
described by CI_Flipflop_3. In addition to supporting substitutability, a primary
goal of establishing the implements relationship is to identify an abstract description
of an implementation’s behavior that is easier for a client to understand than the
description of behavior provided by the implementation.

The benefits of including the implements, exemplar, and correspondence clauses
in a concrete component should be clear. Nevertheless, there are reasons why it might
be useful to maintain this information elsewhere, either in addition to, or perhaps even
instead of maintaining it within the content of concrete components. We discuss this
issue in Section 4.3.5. For now, we reiterate that the implements relationship to
AI_Flipflop may be justified for both CI_Flipflop_2 and CI_Flipflop.3 and that
the additional information provided by CI_Flipflop_3 serves to explain how this
implements relationship may be justified.

3.4 The needs Relationship

The needs relationship is a dependency relationship between a concrete template
and an abstract instance. It expresses a deferred dependency between an instantiation
of the concrete template and an implementation of the abstract instance. The needs
relationship may be defined informally as follows:

49

Conerete template ¢ needs abstract instance A if and onlv if ¢ uses A
and. for all instantiations of C'. (s references to program elements in A
arc replaced by references to the corresponding program elements in some
concrete instance that implements .

The relationship name “needs”™ is short for “needs an implementation of . The
needs relation (defined in Equation 2.6) models the needs relationship between
two components. However. in this chapter we allow a conerete template to have
more than one deferred dependeney. That is. a single conerete template mayv need
implementations of more than one abstract instance. Furthermore. it is possible that
a concrete template may need more than one implementation of the same abstract
instance.

3.4.1 Implementation-Level needs

Before looking at an example of a deferred dependency expressed by the needs
relationship. we will examine a closely related fixed dependency relationship. To
set up both examples. we introduce a new abstract instance. Figure 3.6 shows the
abstract instance AI_Threeway which serves as an austere interface deseribing the
behavior of a “three-way™ light bulb switch with one “off™ state and three different
“on” states. The auxiliary section inclndes the declaration of Z4. a math subtvpe
of INTEGER constrained to the interval [0.3). The interface section of AI_Threeway
specifies the tvpe Threeway and the operations Advance and On. The type Threeway
i~ modeled by Z4. The design intent here is that the abstract state 0 models the
switeh's ~off ™ state and that the states 1. 2. and 3 model the “low”™. “medium™. and
“hieh”™ brightness levels respectively. The Advance operation chanees the state of
its araumment to the next higher brightness level or to “off™ from “high”. The On
operation returns True if the switeh is in one of the three “on™ states corresponding
to 1.2 0r 3. If necessary. a client conld evele through the switeh states using Advance
and On to determine the brightness level.

Fieure 3.7 shows the conerete instance CI_Threeway 1. CI_Threeway_1 imple-
ments Al Threeway and uses CI_Flipflop 3 (shown in Figure 3.5) to do so. The
fixed dependency on CI_Flipflop 3 is expressed with a uses clanse in the context
section. CI_Threeway_1 also uses AI_Threeway in order to express the correspon-
dence. Sinee CI.Threeway_1 uses CI_Flipflop 3. it has direct access to the rep-
resentation of tvpe Flipflop defined by CI_Flipflop_3. From the perspective of
CI.Threeway.1. the concrete type Flipflop is modeled by a singleton of math type
INTEGER (the model of conerete type Integer) constrained to the interval [0, 255].
Thus by referring to a specific conerete component. a client component such as
CI.Threeway_1 commits to a specific conerete representation.

The auxiliary section includes the definition of the math operation PARITY used
in the correspondence clause. The interface section defines the representation of

o0

specification AI_Threeway
auxiliary
math subtype Z4 is INTEGER
exemplar 27
congtraint 0 <= Z2 and Z <= 3
interface
type Threeway is modeled by 74
exemplar T

initially T = 0

procedure Advance (t : Threeway)

ensures t = (#t + 1) MOD 4
function On (t : Threeway) : Boolean
ensures On = (t > 0)

end AT _Threeway
Figure 3.6: Abstract Instance AI_Threeway

type Threeway and implementations for Advance and On. The representation of type
Threeway is a pair of objects, labeled £f1 and ££2, both of type Flipflop as defined
in CI_Flipflop.3. These two objects maintain which of the four states the switch is
in as explained by the correspondence. The two flip-flops are simply used as a two-bit
counter. Since CI_Flipflop_3 represents Flipflop with an object of type Integer
constrained to the interval [0, 255], CI_Threeway_1 represents Threeway as a pair
of objects of type Integer. Thus the representation-level model of type Threeway
as defined by CI_Threeway_1 is a pair of INTEGER objects with values constrained to
the interval [0, 255].

The correspondence clause defines a relation mapping each of the 2562 represen-
tation states to one of the four abstract states of Threeway defined in AI_Threeway.
For example, any representation in which both flip-flop objects have an even value,
maps to the abstract state 0 which models the switch in the “oft” position.

The implementation of the Advance operation is defined in terms of Toggle and
Test. The implementation of On is defined in terms of just Test. These imple-
mentations do not directly access the representation-level state of the flip-flops they
manipulate. Thus in this case, there is no reason why CI_Threeway_1 needs to be
designed with a fixed dependency on CI_Flipflop_3. Nevertheless, without reference
to an abstract specification of CI_Flipflop_3 (at the point in CI_Threeway.1 where

o1

implementation CI_Throoway_1
implements AT_Threcway

context
uses CI_Flipflop_3

auxiliary
math operation PARITY (I : INTEGER) : INTEGER
definition I MOD 2

interface

type Threcoway is represented by
£f7 : Flipflop
£f£2 : Flioflop
end representation
exemplar tw_rep
correspondence tw = 1 * PARITY(tw_rcp.ffl.state) +
2 * PARITY(tw_rep.ff2.state)

]

r

rh

procedure Advance (t : Threeway) is
begin
Toggle (t.ff1)
if not Test(t.ffl) then
Toggle (t.ff£2)
end if
end Advance

function On (t : Threceway) : Boolcan is
begin
return (Test (t.ff1) or Test(t.ff2))
end On

Figure 3.7: Conerete Instance CI_Threeway_1

CI_Flipflop_3iSIHvd).Hn‘rnnvspnndvnvvlnnxtbv(kﬁhnwlh]tmqnsofﬂu‘Flipflop
representation provided by CI_Flipflop.3

Ficure 3.8 shows concerete femplate CT_Threeway_1. an alternative implementa-
tion of AT _Threeway that presents an example of the needs relationship. Instead
of depending on a specific flip-flop implementation. CT_Threeway_1 is parameterized
by a conerete instance that implements AT_Flipflop. The deferred dependeney of
CT.Threeway.1 on some (any) implementation of AI_Flipflop is expressed by the
needs clause at the end of the context section. Any component that includes one or
mmore needs clanses in its context section is a template. The identifier CI_Flipflop

52

implementation CT_Threeway_1
implements AI_Threeway

context
ugses AI_Flipflop
needs CI_Flipflop implementing AI_Flipflop

auxiliary
math operation BTI (B : BOOLEAN) : INTEGER
definition if B then 1 else 0

interface

type Threeway is represented by
ffl : Flipflop
ff2 : Flipflop
end representation
exemplar tw_rep
correspondence tw = 1 * BTI(tw_rep.ffl) + 2 * BTI(tw_rep.£ff2)

procedure Advance (t : Threeway) is
begin
Toggle (t.ff1l)
if not Test(t.ffl) then
Toggle (t.ff2)
end if
end Advance

function On (t : Threeway) : Boolean is
begin
return (Test (t.ffl) or Test(t.f£f2))
end On

end CT_Threeway_1

Figure 3.8: CT_Threeway_-1 needs AI_Flipflop

in the needs clause is a formal parameter name representing the concrete instance
supplied as an actual parameter when CT_Threeway_1 is instantiated. Note that the
needs clause presented here is very similar to the needs clause of Goguen’s Library
Interconnection Language (LIL) [Gog86, p. 22].

CT_Threeway_1 has a fixed dependency on AI_Flipflop as indicated by the second
uses clause in the context section. CT_Threeway.1 uses AI_Flipflop to specify the
behavioral requirements of any concrete instance supplied as an actual parameter.
AI_Flipflop also provides the model for type Flipflop and behavioral specifications
for operations Toggle and Test used in CT_Threeway_1. Therefore, no matter how

33

LAI_Th reeway j

A

implements

CT_Threeway_1

Figure 3.9: CT_Threeway_1 needs AI_Flipflop

CT.Threeway.1 is instantiated. it is possible to reason about the behavior of the
conerete instance generated in terms of AIFlipflop. In particular. it is possible
to justify the claim that any instance of CT_Threeway_1 implements ATl _Threeway
which is the claim expressed in the first line of Figure 3.8, Thus this is an example
of the second form of implements listed on page 6.

The interface section of CT_Threeway_1 is identical to that of CI_Threeway_1
except for the correspondence clause. The correspondence is different hecause the
representation-level model of tvpe Threeway defined in CT_Threeway_1 is different
from that of type Threeway defined in CI_Threeway_1. The mathematical model
of tvpe Flipflop used in CT_Threeway 1 is BOOLEAN as specified in AI_Flipflop.
Therefore the representation-level model of type Threeway defined in CT.Threeway_1
i~ a pair of BOOLEAN objects. The correspondence clanse uses the math operation
BTI (Boolean-To-Integer) to convert FALSE to 0 and TRUE to 1. The relation defined
by the correspondence maps the four representation states to the four abstract states
defined in Al Threeway. For example. any representation for which values of both
flip-flops correspond to TRUE maps to the abstract state 3 which models the switch
in the “high™ position.

Figure 3.9 shows a component coupling diagram depicting the implements and
needs relationships encoded by CT_Threeway_1. The needs relationship is depicted
by a thick solid arrow from a conerete component to an abstract component. Note
that the uses relationship between CT_Threeway.1 and AI_Flipflop is not shown
since a needs relationship always implies a uses relationship.

ol

Since CT_Threeway_1 is a concrete template, it must be instantiated in order to
describe the behavior of a concrete instance that may be integrated into a component-
based svstem. In this case, instantiating CT_Threeway_1 requires selecting a compo-
nent that implements AI_Flipflop to fulfill the stated need. The code describ-
ing an instantiation of CT_Threeway.l with the CI_Flipflop_3 implementation of
AT Flipflop is as follows.

implementation CI_Threeway implements AI_Threeway
by CT_Threeway_1 with (CI_Flipflop => CI_Flipflop_ 3)

The name CI_Threeway refers to the concrete instance resulting from the instan-
tiation of CT_Threeway_1 with actual parameter CI_Flipflop_3 bound to the formal
parameter CI_Flipflop. The instantiation explicitly states that CT_Threeway im-
plements AI_Threeway which follows from the implements relationship between
CT_Threeway_1 and AI_Threeway. Therefore we may reason about the behavior of
the code using CI_Threeway in terms of the specification provided by AI_Threeway.
In this example, the behavior implemented by CI_Threeway is identical to the behav--
ior described by CI_Threeway_1 shown in Figure 3.7. As a result of this instantiation,
only the program elements described by AI_Threeway are visible to clients of the in-
stantiation CI_Threeway. Thus this single instantiation serves two distinct purposes.
First it “fills in the holes” of CT_Threeway_1 to create a usable concrete instance,
CI_Threeway. Second, it associates with this concrete instance the abstract interface
AI_Threeway that describes how clients should view CI_Threeway and, in fact, the
only program elements defined in CT_Threeway_1 that are available for use by client
code.

Using the model developed in Chapter 2, we describe the meaning of CI_Threeway,
the component described by the above instantiation, as follows. CI_Flipflop.3 and
CI_Threeway are members of CI and CT_-Threeway_1 is a member of CT. The be-
havior implemented by CI_Threeway, S(CI_Threeway), is modeled by the element of
B given by S(CT_Threeway.1)(S(CI_Flipflop-3)).

As we noted at the beginning of this section, a concrete template may have de-
ferred dependencies on implementations of more than one abstract component and
may even have multiple independent dependencies on the same abstract compo-
nent. For example, it would be possible for a different concrete template imple-
menting AI_Threeway to have two needs clauses in the context, one naming CI_FF_1
and the other naming CI_FF_2, both representing concrete instances implementing
AT Flipflop. Then the two fields ££1 and ££2 representing the type Threeway could
be declared of types CI_.FF_1.Flipflop and CI_FF_2.Flipflop. In this case instan-
tiation of the concrete template implementing AI_Threeway would require two actual
parameters, both implementing AI_Flipflop. The actual parameters might be the
same concrete instance or two different implementations of AI_Flipflop. Clearly this

35

simple example presents little motivation for using two different implementations of
AT Flipflop. However. Sitaraman discusses how. in general. such a strategy is useful
for performance-parameterized components [Sit92].

3.4.2 Specification-Level needs

On pace 15 we listed three distinet relationships to which we apply the overloaded
tern implements. The implements relationship hetween a conerete instance and
an abstract instance was exemplified by CI_Flipflop_3 implementing AI_Flipflop.
The implements relationship between a conerete template and an abstract instance
was exemplified by CT_Threeway. 1 implementing Al _Threeway. We are now ready
to discuss an example of the third form of implements. a concrete template imple-
mentine an abstract template.

Figure 3.10 shows the encoding of abstract template AT Stack. a behavioral inter-
face specification for a stack which is generie with respect to the type of elements it
may contain. AT_Stack has a deferred dependeney on the type of elements contained
im the stack. An instantiation of AT_Stack needs an implementation of a specific
tvpe to serve as the type of elements contained within the stack!'. AT_Stack uses
AT_AnyType. a special abstract instance. to express its requirement for a component
providing a tvpe. AILAnyType is special in that. by convention. every concrete in-
stance that defines at least one type implements Al AnyType. AI_AnyType names
a sincle tvpe. AnyType. which has no associated mathematical model. When an
abstract template that needs an implementation of AI_AnyType is instantiated. the
mathematical model of the conerete type that corresponds to AnyType is used to
deseribe the math model of the resulting instance. If the component serving as the
actual parameter corresponding to AI_AnyType defines more than one tvpe. then the
fiest type defined is matched to AnyType. (A tvpe other than the first tyvpe defined
bva conerete instance may be matched with AnyType by using an abstract instance
to “mask ont™ all but the desired type.)

[AT_Stack. the nanmie AnyType represents the tvpe supplied by the component
which serves as the actual parameter corresponding to CI_StackItemType in an in-
stantiation of AT Stack. In the auxiliary section. the parameterized math modnle
MT_String Theory is instantiated to produce the math module MI_String_Theory
which defines the math type STRING used to model a stack. The formal (tvpe) pa-
rameter ItemType of MT_String_ Theory represents the math tvpe of the elements
of the math type STRING. Thus. for example. if AT_Stack were instantiated with
Cl-Integer.1 as the actual parameter for CI_StackItemType. math tvpe STRING
would refer to a string of math tvpe INTEGER. In this instance. the mathematical
model of Stack would be a string of INTEGER values.

"The stack specified in Figure 3.10 s a homogeneous stack. That is. all elements in instances of
the specificd stack are objects of a single fixed tvpe.

a6

specification AT_Stack

context
uses MT String_Theory
uses AI_AnyType
needs CI_StackItemType implementing AI_AnyType

auxiliary
math module MI_String_Theory is MT_String_Theory
with (StringItemType => AnyType)

interface

type Stack is modeled by STRING
exemplar s
initially s = EMPTY_STRING

procedure Push (g : Stack, x : AnyType)
ensures s = #is * <x> and x = #x

procedure Pop (s : Stack, x : AnyType)
requires s /= EMPTY_STRING

ensures #s = s * <x>
function Length (s : Stack) : Integer
ensures Length = |s|

end AT Stack

Figure 3.10: Abstract Template AT_Stack

The interface section of AT _Stack defines the program type Stack and three
operations: Push, Pop, and Length. As noted above, type Stack is modeled by a
mathematical string of elements. The initial value of a Stack object is modeled
by an empty string. The (constant) math operation EMPTY_STRING is provided by
MI_String Theory. The post-condition of Push specifies that after the Push operation
completes, the new value of the stack (s) is modeled by the old value of the stack
(#s) concatenated with (%) the singleton string containing the element pushed onto
the stack (<x>). Also, the value modeling the element being pushed, is the same
before and after the operation (x = #x)'2. Pop’s requires clause specifies the pre-
condition that the stack not be empty. Pop’s ensures clause specifies that after the

12The post-condition of Pop in a RESOLV E-style stack interface does not require that the element
being pushed is unchanged. We discuss the RESOLVE approach in the context of a queue component
in Section 5.2. :

57

Pop operation. the new value of the stack (s) concatenated with the singleton string
containine the element popped from the stack (<x>) will be the same as the old vahie
modeling the stack. The Length operation is a function which returns the length of
the stack. modeled by the length of the string representing the stack (1s1).

Figure 3.11 shows the encoding of conerete template CT_Stack_1 which provides
an implementation of the behavior specified by AT_Stack. CT_Stack_1 has two de-
ferred dependencies. First. it needs an implementation of AI_AnyType to provide the
tvpe of elements to be contained in the stack. Second. it needs an implementation
of an anstanec of AT One Way List that has been instantiated with the same con-
crete instance supplied as the first parameter. the actual parameter corresponding to
CI_StackItemType. The list implementation supplied as the second parameter is used
as the stack representation. AT.One Way List specifies a generice list which is modeled
v a pair of STRING values. a left string and a right string. both initiallv empty. The
insertion and removal point for elements in the list is the leftmost element of the right
string. A more detailed deseription of the One Way_List specification mav be found
in SWHI3 .

The operations Push. Pop. and Length are implemented triviallv by calling the
list operations Add_Right. Remove Right. and Right_Length respectivelv. This im-
plementation only uses the right string of the list which grows to the left as elements
are added. Sinee Stack is modeled by a string that grows to the right as elements
are pushed onto it. the correspondence clause states that the right string model-
ing the stack’s list representation. when reversed. corresponds to the string modeling
the stack. Note that the math operation REVERSE is defined in MT_String_Theory
and is available for use here only because CT_Stack. 1 uses AT _Stack which uses
MT_String_Theory.

Fieure 3.12 is a CCD showing the hehavioral relationships between CT_Stack_1.
AT_Stack and the other components upon which it directly depends. No uses rela-
tionships are shown since these are implied by the needs relationships. Also. we do
not show dependencies on components providing built-in tvpes such as CI_Integer._1
which defines the type Integer returned by the Length function.

We claim that CT_Stack_1 implements AT_Stack by the third definition of im-
plements (on page 16). That is. for any instantiation (* of CT_Stack_1 there ex-
iIsts some instantiation 77 of AT_Stack. such that imps(C.7) holds. In this case.
if the same conerete instance is supplied as the actnal parameter corresponding to
CI_StackItemType for both AT_Stack and CT_Stack_1. then the concrete instance
deseribed by the instantiation of CT_Stack_1 will implement the abstract instance
deseribed by the instantiation of AT _Stack.

Fieure 3.13 shows the code for two instantiations used to generate a stack of
flip-flops. The first instantiation deseribes the conerete instance CI_Flipflop_List

as

implementation CT_Stack_1
implements AT_Stack

context
uses AIl_AnyType
uses AT One_Way_ List
needs CI_StackItemType implementing AI_AnyType
needs CI_List implementing AT_One_Way_List with
(CI_ListItemType => CI_StackItemType)

interface

type Stack is represented by
holder : List
end representation
exemplar s_rep
correspondence s = REVERSE(s_rep.holder.right)

procedure Push (s : Stack, x : AnyType)
begin))
Add_Right (s.holder)
end Push

procedure Pop (s : Stack, x : AnyType)
begin
Remove_Right (g.holder)
end Pop

function Length (s : Stack) : Integer
begin
return (Right_Length(s.holder))
end Length

end CT_Stack_1

Figure 3.11: Concrete Template CT_Stack-1

which implements the behavior specified by the abstract instance generated by in-
stantiating AT_One Way_List with concrete instance CI_Flipflop.3 (shown in Fig-
ure 3.5). The implementation of CI_Flipflop_List is provided by the instantiation of
CT_One Way.List_1 with CI_Flipflop-3. The concrete instance CI_Flipflop_Stack
is generated similarly. It implements the abstract instance formed by instantiating
AT_Stack with CI_Flipflop-3. The implementation of CI_Flipflop_-Stack is pro-
vided by instantiating CT_Stack.1 with CI_Flipflop_3 serving as the element type
and CI_Flipflop_List serving as the list implementation used to represent the stack.

99

[AT _Stack

A

needs
implements

CT_Stack_1

Al_AnyType)

needs

[AT_One_Way_List

implementation CI_Flipflop_List
implements AT_Onc_Way_List with
(CIi_ListItemTypce => CI_Flipflop_3)
by CT_Orc_Vay_List 1 with
(CI_ListItemType => CI_Flipflop_3)

implementation Ci_Flipflop_Stack
implements AT_Stack with
(CI_StackTtemType => CI_Flipflop_3)
by C7_Stack_1 with
(CI_StackItemTypce => CI_Flipflop_ 3,
CI_List => CI_rlipflop_List)

Figure 3.13: Instantiation of CT_Stack_1

The needs relationship between an implementation and a specification expresses a
polymorphic velationship. Nany different ~forms™ or implementations of the abstract
component operations may be used by the objects declared from instances of the con-
crete component. There are two primary strategies for encoding this polvmorphism
in programming languages. Object-oriented disciplines tvpically use inheritanee and
dyramic binding to achieve polvmorphism. The notation used in this chapter uses
parameterization and static binding. RESOILVE/Ada95. discnssed in Chapter 5 uses
a combination of parameterization and inheritance. Section 4.2 discusses program-
ming lanenace support for expressing the needs relationship. In the next section

(§10]

we discuss the benefits of designing components using the implements and needs
relationships.

'3.4.3 Integration Dependencies Versus Design Dependencies

Recall from Chapter 1 the difference between design dependencies and integration
dependencies. A component’s design dependencies exist independent of any particular
use of the component. A component’s integration dependencies are the dependencies
it has on other components once integrated into a component-based system. The
uses relationship between concrete instances naturally expresses integration depen-
dencies and also may express fixed design dependencies. For example, the relationship
CI_Threeway_1 uses CI_Flipflop_3, as encoded in Figure 3.7, expresses a fixed de-
sign dependency. The needs relationship may be used to express design dependencies
as deferred dependencies. The relationship CT_Threeway-1 needs AI_Flipflop, as
encoded in Figure 3.8 and depicted in Figure 3.9, expresses a deferred design depen-
dency. Building a system from concrete templates with deferred dependencies may
require more effort than building a system from (pre-existing) concrete instances with
only fixed dependencies, since templates must be instantiated. However, as we dis-
cuss below, using needs relationships instead of uses relationships to express design
dependencies can significantly improve the understandability, maintainability, and
reusability of components. ‘

Figure 3.14 shows three different views of the same component-based system, each
emphasizing a different component relationship. Figure 3.14(a) is the same diagram
shown in Figure 2.8 and explained in Section 2.4.1. The arrows represent the (direct)
uses relationships involving these five concrete instances. The arrows shown in Fig-
ure 3.14(b) represent the needs relationship. This diagram shows that concrete tem-
plate A1T needs a component that implements the behavioral specification B and one
that implements the behavioral specification C. In the system shown, instantiations
of B1T and C1T satisfy these requirements, respectively. B1T’s requirement for imple-
mentations of D and E and C1T’s requirement for an implementation of E are satisfied
by implementations D1, E1, and E1, respectively. The arrows in Figure 3.14(c) repre-
sent the implements relationship and also the template instantiations necessary to
build the system. This view conveys exactly the same information as Figure 3.14(b),
but more clearly depicts A1T, B1T, and C1T as templates with “holes” to be filled in.

Figure 3.14(a) is a traditional structure chart that shows which parts of the sys-
tem depend on which other parts. It does not, however, provide any information
about the role played by each component or what the options might be for compo-
nent replacement. Figure 3.14(b) and (¢) convey more information useful to system
maintainers and component composition tools. These diagrams provide information
about the roles played by each sub-component of the system (although no system-
level specification describing the behavior of A1T is shown). By depicting external

61

(B] [C]

BIT CIT

Sk

El

(a) uses (b) needs (c) implements

Figure 3.11: Three Views Of The Same Svstem

dependencies of A1T. BIT. and C1T at the specification level, Figures 3.14(h) and (¢)
identify requirements for components that might replace B1T. C1T. D1. or E1.

Consider an example of how the system in Figure 3.14 might be modified. Asstume
that the system performance needs to be improved and that analvsis determines that
component E1 is a bottleneck. The figure shows that BIT and C1T both depend on
any conerete instance that implements E. not specifically on implementation Ei.
Thns. another component that implements E. sav E2. can be substituted for E1 in
this system without requiring changes to any of the other components. Presumably
replacing E1 with E2 would vield better svstem performance due to differences between
the two implementations not constrained by E.

Asanother example. implementation D1 might serve as an interface to the system’s
environment. That is. DI might interact directly with operating svstem software or
hardware. I the svstem needs to be rehosted to a new environment. then compo-
nent D1 might need to be replaced with another implementation providing the same
behavior as specified by Do but implementing these services differently in order to
interact with a different environment. In this case. another component. sav D2, that
interacts with the new environment and which smplements D could be substituted for
D1 without requiring changes to other components in the system.

We said that cach of the three diagrams in Figure 3.1.4 depicts the same specific
system composed of five components. For this to be the case. B1 must denote the
component generated by instantiating B1T with D1 and E1. C1 must denote the com-
ponent generated by instantiating C1T with E1. and A1 must denote the component
(or top-level program unit) generated by instantiating A1T with B1 and C1. In this
case.none of the five integration dependencies shown in Figure 3.14(a) need be desien
dependencies. That is. prior to instantiation of B1T. there mav he no component Bl

62

that specifically depends on D1 and E1. If the system were developed from compo-
nents in a component library, then the library might contain the components A1T,
B1T, C1T, D1, and E1 with design dependencies expressed in terms of implements
and needs rather than in terms of uses.

Software engineers generally want to avoid any unnecessary dependencies (cou-
pling) between components. The needs relationship between an implementation
and a specification may be applied to achieve this goal. Figure 3.9 depicts the
needs relationship between the implementation CT_Threeway_1 and the specification
AI_Flipflop. In this case, the description of the three-way switch implementation
only depends on the abstract description of a flip-flop (provided by AI_Flipflop).
During program execution, an object declared from an instance of CT_Threeway_1
will indeed depend on some specific implementation of AI_Flipflop.

Fully understanding the non-functional characteristics of this object would in-
clude understanding the non-functional characteristics of the specific flip-flop imple-
mentation used. However, to understand and reason about the functional behavior
described by an instance of CT_Threeway_1, it is sufficient to understand the behavior
described by AI_Flipflop and AI_Threeway (assuming CT_Threeway.1 implements
AI Threeway as claimed).

3.5 The extends Relationship

Once a software system has been designed and implemented, changes to require-
ments are likely to call for improved performance and functionality. Improvements
in performance which do not alter functionality may be addressed by replacing one
concrete component with another. This section describes the extends relationship
which is useful for adding new functionality to existing components.

If component designers had perfect foresight they might be tempted to design
components with all the functionality that clients could ever want. If this were possi-
ble, then implements, needs, and uses might be sufficient for describing component
relationships. Unfortunately, component designers do not have perfect foresight. No
matter how much forethought designers apply, new requirements almost always ex-
pose some desirable and unforeseen functionality. Clearly we need some method for
extending the functionality of components already in use.

Lack of perfect foresight, however, is not the only reason for providing a means to
extend the functionality of components. Some disciplines for designing components
advocate providing a wide assortment of possibly useful operations in each individual
component [Mey94]. The problem with this approach is that the resulting interfaces
are more complex and thus more difficult for clients and component implementers
to understand. Furthermore, this approach either leads to code bloat resulting from
many unused operations or requires assumptions about optimizations which attempt
to expunge the code of unused operations. One reasonable approach is to design

63

components with a minimally sufficient set of operations which lav a foundation upon
which future enhancements may be construeted. Whatever initial approach is used.
however, enhancements to functionality are inevitable,

3.5.1 Extension Components

The extends relationship is a behavioral relationship hetween two abstract com-
ponents. The extends relationship may be defined informally as follows:

Abstract component 4, extends abstract component A, if and only if
every conerete component which implements ., also implements 1.

The extends relationship is a conformance relationship modeled by the exts rela-
tion defined in Equation 2.3, However, like imps. exts onlv deseribes a relation over
instance components. As we did with implements. we overload the term extends
to inchide relationships involving template components. We use the overloaded term
“extends” for the following three distinet relationships.

o If Ay and .1, are both abstract instances. then the claim that 4, extends A
s an assertion that exts(.1,. -;) holds.

e If 1. isan abstract instance and .1, is an abstract template. then the claim that
Ay extends 1y is an assertion that for eny instantiation AL of Ay exts(ALL A))
holds.

o If 1 and -1, are hoth abstract templates, then the claim that A extends A is
an assertion that for any instantiation A, of 4, there exists some instantiation
AL of Ay sueh that exts(.1,.4}) holds.

We diseuss an example of the first case in this section. In Section 3.5.3. we discuss
an example of the third case. The second case is inchided primarily for completeness.
We are not aware of anv motivating examples for this form of extends.

I Section 2.3.2 we discussed three different ways in which a specification CcoOmpo-
nent might be extended: specialization. generalization. and augmentation. 1f speci-
fication components are parameterized. then specialization of specifications may be
achieved conveniently throngh the instantiation of abstract templates, If specifica-
tion components are well-designed from a component-based reuse perspective. then
there shonld be dittle need for generalization (weakening operation pre-conditions).
Therefore. in this section we focus on extension by augmentation. that is. extending
a component by adding new operations.

As a simple example of the extends relationship. consider the abstract instance
Al Flipflop shown in Figure 3.1 and the abstract instance AIFFExt shown in Fig-
wre 3.15. We claim that AT FFExt extends AI_Flipflop in accordance with the first

61

specification AI_FFExt
extends AI_Flipflop

interface

type Flipflop is modeled by BOOLEAN
exemplar ff
initially ff = FALSE

procedure Toggle (f : Flipflop)
ensures f = NOT #f

function Test (f : Flipflop) : Boolean
ensures Test = £

procedure Set (f : Flipflop)
ensureg f = TRUE

end AI_FFExt

Figure 3.15: Abstract Instance AI_FFExt

of the three definitions of extends above. That is, any concrete instance that imple-
ments AI_FFExt also implements abstract instance AI_Flipflop. In this case, as is
often the case with extension by augméntation, it is easy to see that the extends re-
lationship is justified. The only difference between AI_Flipflop and AI_FFExt (aside
from their names) is that AI_FFExt includes the extends clause in its header and a
specification of the Set operation. The extends clause plays the same role as the
implements clause discussed in Section 3.3: it records design intent and it identi-
fies syntactic and semantic conformance checking requirements. The specification of
procedure Set states that the abstract value of the flipflop passed as an argument is
TRUE after execution of the operation. Thus AI_FFExt provides the same type and
operations as AI Flipflop plus the additional operation Set.

From a software maintenance perspective, the relationship between AI_FFExt and
AI_Flipflop raises an important issue. Notice that AI_FFExt includes a copy of the
interface section of AI_Flipflop. This method of encoding a specification extension,
duplicating the specification being extended, has advantages and disadvantages with
respect to the alternative approach of specification-by-difference. Figure 3.16 shows
the abstract instance AI_FFWSet. AI_FFWSet specifies the same behavior as AI_FFExt
using the specification-by-difference approach. AI_FFWSet uses AI_Flipflop and de-
fines its own interface in terms of the interface defined by AI_Flipflop. The statement
“re-exports AI_Flipflop” in Figure 3.16 includes all of the interface section of

65

specification AT _FFwWSct
extends AI_TFlipflop

context
uses AT_Flipflop

interface
re-exports Al_Flipflop

procedure Sct (f : Flipflop)
ensures f = TRUE

end AI_FFv_Sct

Figure 3.16: Abstract Instance AI_FFWSet

AT Flipflop in the interface section of AI_FFWSet. As we discuss in Chapter 4.
re-exports is a language mechanism similar to a static form of inheritance.

The primary difference hetween AT_FFExt and AI_FFWSet is that the behavior de-
scribed by AT_FFWSet depends upon AI_Flipflop whereas the hehavior described by
AI_FFExt does not depend on AI_Flipflop. Note that the extends clause in hoth of
these components is only a elaim documenting an intended relationship and does not
influence the hehavior described by either of the components. An advantage of inchud-
ing the text of the extended specification’s interface in the component extending the
specification is that the extended specification is more cohesive. A software engineer
attempting to understand the behavior specified by AT_FFExt need only look at that
sinele component™. In order to understand the behavior deseribed by AI_FFuSet.
hoth AI_FFWSet and AI_Flipflop must be examined. In the case where one speci-
fication extends more than one other specification. it may be necessary to examine
several specification components in order to fullv understand the behavior deseribed
by a sincle extension component.

An advantage of the specification-by-difference approach is that a specification ex-
tension component is simpler and focuses attention on the specification of the added
behavior. Like implementation units, large complex specifications may be easier to nn-
derstand when divided up into smaller units. Also. with the specification-by-difference
approach. there may be only a single point of modification if a specification CcoOmpo-
nent needs to be changed. If the interface of a specification component with many

Y This H~<HIH(N.(lf(WHIYSP,tlHl!fln‘ln?ﬁ!”:ﬁl”ﬂ'HIK]PFSfﬂINLﬂ1lu‘lwaﬂ\ﬂ(n'0filu‘Iﬂlﬂt-hl(u)ﬁfﬂfh)nﬁ
for Integer and Boolean

66

extends

Al_Flipflop [«<----- {AI_FIipflopE)a
extends

Al_Flipflop - —(AI_FFWSetJ

Figure 3.17: The extends Relationship Without and With Coupling

extensions needs to be changed, then all copies of that interface embedded within ex-
tension specification components probably need to be changed as well. Of course, any
change to a specification component potentially requires re-justification of extends
relationships between that component and others.

One way to mitigate the problem of having a single interface composed of opera-
tions defined in various components is to use a browser tool capable of displaying a
complete interface even if its constituent parts are defined in several different compo-
nents. Such a tool could use the information recorded by re-exports clauses in order
to determine the full extent of an extended interface. Meyer describes a tool with
similar capabilities for viewing Eiffel components extended by inheritance in the “flat-
short” form [Mey94, p. 29]. In the examples which follow, we use the specification-
by-difference approach to specification extension. It is important to realize, however,
that the extends relationship is independent of the language mechanisms, such as
re-exports or inheritance, used to encode a specification extension. As we discuss
in Chapter 4, programming languages generally do not make this distinction between
behavioral and syntactic relationships.

The top of Figure 3.17 shows the CCD depiction of the extends relationship
between AI FFExt and AI Flipflop. The extends relationship is depicted as a
thin dashed arrow from the extension specification to the specification being ex-
tended. In addition to its extends relationship with AI_Flipflop, AI_FFWSet also
uses AI_Flipflop. Since specification-by-difference is the most common way of ex-
tending a specification, rather than drawing two arrows, we depict the combined
extends and uses relationships with a thick dashed arrow as shown in the bottom
of Figure 3.17. The thick arrow indicates that AI_FFWSet depends on (is coupled to)
AT Flipflop. ’

67

3.5.2 Implementing Extension Components

We now discuss three different approaches to encoding an implementation of an
abstract extension component: the direct. coupled. and layered approaches. The
primary motivation here is to demonstrate another use of the needs relationship
Livered extensions. The discussion also provides more examples of the implements
and uses relationships and raises some interesting desien and implementation issues.

Fieure 3.18 shows CI_FFWSet_1. a concrete instance that implements AI_FFWSet.
CIFFWSet 1 is a direef implementation of AT FFWSet. A direct implementation of a
specification does not depend on any other implementations of the specification being
extended. Thus a direct implementation must implement the union of the behavior
specified by all extension components that it implements including that of the behav-
ior being extended. In this example. CI_FFWSet_1 must provide a representation for
the tvpe Flipflop and implementations for the operations Toggle and Test as well
as an implementation for the extension operation Set. The implementation shown
in Fioure 3.18 uses the obvious representation. a Boolean program tvpe represents
the BOOLEAN math type used to model a flipflop. We will discuss the advantages and
disadvantaces of the divect implementation approach after looking at examples of the
other two approaches,

Ficure 3.19 shows CILFFWSet 2. another component that implements AT_FFWSet.
CI.FFWSet.2 s a coupled implementation of AI FFWSet. A conpled implementation of
an extension has a fixed dependeney on a specific implementation of the specification
being extended. That is. the extension implementation uses an implementation of
the specification being extended. In this case. CI_FFWSet_2 has a fixed dependency
on CI.Flipflop.2 (Figure 3.2) which implements AI_Flipflop.

The primary motivation for a coupled implementation of an extension is to allow
the extension implementation to have direct access to the data representation of
a specific implementation of the component being extended. Thus. as with direct
implementations. new operations may be implemented in terms of a specific data
representation. For example. the Set operation defined in CI_FFWSet_2 uses the
Integer representation of type Flipflop defined in CI_Flipflop 2. As we discuss in
Chaprer 4 different programming langnages support a variety of different mechanisms
that allow or disallow one component to have direet access to a type representation
defined in another component. A coupled implementation of an extension is only
possible when the implementation being extended is encoded in a wayv that allows
another component to directly access the data representation of a tvpe that it defines.

CIFFWSet_2 has direct access to CILFlipflop_2's representation of Flipflop
becanse CI_FFWSet 2 uses CI_Flipflop.2 and CI_Flipflop_2 defines its represen-
tation of Flipflop in the interface section (as opposed to the auxiliary sec-
tion). The “re-exports CI_Flipflop 2 statement includes the interface section
of CI.Flipflop_2 in the interface section of CI_FFWSet_2. This use of re-exports

6S

implementation CI_FFWSet_1
implements AI_FFWSet

interface

type Flipflop is represented by
state : Boolean := False
end representation
exemplar ff_ rep
correspondence ff = ff_rep.state

procedure Toggle (f : Flipflop) is

begin
f.state := not(f.state)
end Toggle
function Test (f : Flipflop) : Boolean is
begin
return f.state
end Test

procedure Set (f : Flipflop) is
begin
f.state := true
end Set

end CI_FFWSet_1

Figure 3.18: CI_FFWSet_1 — A Direct-Implementation

at the implementation level is analogous to the use of re-exports by AI_FFWSet (Fig-
ure 3.16) at the specification level. Whereas re-exporting an abstract component may
be used for achieving specification-by-difference, re-exporting a concrete component
is useful for achieving implementation-by-difference. Implementation-by-difference is
one way to support reuse of existing implementation code and is a primary use of
inheritance.

Figure 3.20 shows CT_FFWSet_3, a concrete template that implements AI_FFWSet.
That is, every concrete instance described by instantiating CT_FFWSet_3 implements
AI_FFWSet. CT_FFWSet_3 is a layered implementation of AI_FFWSet. A layered im-
plementation of an extension has a deferred dependency on an implementation of
the specification being extended. That is, the extension implementation needs an
implementation of the specification being extended. In this example, CT_FFWSet_3
has a deferred dependency on an implementation of AI_Flipflop.

69

implementation CI_FFWSct_2
implements AI_FFWSct

context
ugses CI_Flipflop_2

interface
re-exports CI_TIlipflop_2

procedure Sct (f : Flipflop) is
begin
f.state := 1
end Sct

end CI_FFwSect_ 2

Ficure 3.19: CI_FFWSet 2 A Coupled Implementation

Like a conpled implementation of an extension. an instantiotion of a lavered im-
plementation renses a specific implementation of the specification being extended.
Howeever. since a lavered implementation may be instantiated with any conerete in-
stance that implements the specification being extended. it only has access to the
interface defined by the specification it needs. Thus a layvered implementation does
not have direct access to the concrete representation of any tvpes defined in the
component being extended. Operations defined in a lavered implementation of an ex-
tension must be encoded in terms of — “layvered™ on top of operations provided by
the component being extended. Note that we have already seen examples of lavering
usedd to implement one abstraction in terms of another: CT_Threeway_1 (Figure 3.8)
and CT_Stack_1 (Figure 3.11).

For CT_FFWSet_ 3. shown in Figure 3.20. the interface section must be defined
in terms of the abstract interface provided by AI_Flipflop. Thus the operation
Set i~ implemented in terms of the operations Toggle and Test. as specified by
AT_Flipflop. rather than in terms of a specific data representation. The “re-exports
CI Flipflop™ statement includes the interface section of the concrete instance
nsed to instantiate CT_FFWSet_3 as part of the interface deseribed by an instanti-
ation of CT_.FFWSet_3. Thus the concrete instance deseribed by an instantiation of
CT_FFWSet_3 provides evervthing in the interface of the conerete instance which serves
at the actual parameter for CI_Flipflop. plus an implementation of the operation
Set. Since a conerete instance that implements AI_Flipflop mayv implement more
behavior than that specified by AI_Flipflop. an instantiation of CT_FFWSet_3 may

it

implementation CT_FFWSet_3
implements AI_FFWSet

context
uses AI_Flipflop
needs CI_Flipflop implementing ATI_Flipflop

interface
re-exports CI_Flipflop

procedure Set (f : Flipflop) is
begin
if not(Test(f)) then
Toggle (f)
end if
end Set

end CT_FFWSet_3

Figure 3.20: CT_FFWSet_3 — A Layered Implementation

correspondingly implement more behavior than that specified by AI_FFWSet. Re-
gardless of how CT_FFWSet_3 is instantiated, however, its contents may only refer to
types and operations as specified in AI Flipflop (and, of course, built-in types and
operations).

Figure 3.21 shows the code for three instantiations demonstrating how a lay-
ered implementation of an extension may be instantiated and the resulting con-
crete instance further extended. The first instantiation defines the concrete instance
CI_FFBase which describes the behavior specified by AI_Flipflop (the type Flipflop
and operations Toggle and Test) as implemented by CI_Flipflop_2. The second
instantiation defines the concrete instance CI_FFWSet which describes the behavior
specified by AI_FFWSet as implemented by CT_FFWSet_3 instantiated with CI_FFBase.
Thus, CI_FFWSet provides implementations of Toggle and Test as described by
CI_Flipflop_2 and an implementation of Set realized by calls to those implementa-
tions of Toggle and Test.

The third instantiation defines the concrete instance CI_FFWSetReset using the
specification AI_FFWReset and the implementation CT_FFWReset_3. AI_FFWReset ex-
tends AI_Flipflop with the operation Reset in the same way as AI_FFWSet does with
Set. CT_FFWReset_3 implements AI_FFWReset in the same manner CI_FFWSet_1 im-
plements AI_FFWSet. (The code for AI_FFWReset and CT_FFWReset_3 is not shown.)
CI_FFWSetReset describes the behavior specified by the union of AI_FFWSet and.

71

implementation CI_FIBasc
implements AI_Flipflop
by Ci_Flipflop_2

implementation CI_FFwWSct
implements AT FFviSct
by CT_FrwSct_3 with
(Ci_Flipflop => CI_IFBasc)

implementation CI_FIrwWSctRescet
implements AT_FFriwSct, AI_FFWRecsct
by CT_I'TrwWReset_3 with
(Ci_Flipflop => CI_FrWSct)

Fignre 3.210 Instantiation of Lavered Extension Implementations

AT FFWReset as implemented hy CT_FFWReset_3 instantiated with CI_FFWSet. the re-
sult of the second instantiation. Thus. CI_FFWSetReset provides the conerete type
Flipflop and operations Toggle. Test. Set. and Reset.

Note that the direet and coupled implementations of AI_FFWSet could bhe instan-
tiatedd in much the same way as the first instantiation shown in Figure 3.21. In both
cases “implements” would be followed with "AI_FFWSet™. For the direct implemen-
tation. “by” would be followed by “CI_FFWSet_17. For the coupled implementation.
“by” would be followed by “CI_FFWSet_ 2.

Ficure 3.22 is a CCD depicting the three different implementations of AI_FFWSet
as well two implementations of AI_Flipflop and the relationships among these com-
ponents. CILFFWSet_1 has no dependencies on other components (except for the
built-in component CI_Boolean 1 which we do not show). Thus modifications to other
components cannot affect the hehavior deseribed by CI_FFWSet 1. If AI_FFWSet or
AI.Flipflop were maodified. then the correctness of the claim that CI_FFWSet_1 im-
plements AT FFWSet (and implicitly AT_Flipflop) might change. bhut not the behav-
ior implemented by CI_FFWSet_1. The uses relationship shown hetween CI_FFWSet 2
and CI_Flipflop.2 depicts the fixed dependency of CI_FFWSet_2 on CI.Flipflop_2.
This indicates that a modification to CI_Flipflop.2 may alter the behavior de-
seribed by CI_FFWSet_2. The needs relationship shown between CT_FFWSet_3 and
AI_Flipflop depicts the deferred dependeney of CT_FFWSet 3 on AT_Flipflop. That
is. CT_FFWSet .3 needs an implementation of AI_Flipflop. A change to the specifi-
cation AI_Flipflop could affect the behavior deseribed by CT_Flipflop.3. However.
changes to any implementations of AT_Flipflop cannot alter the hehavior described
In CT_FFiWSet 3.

2

extends
Al_Flipflop - Al_FFWSet)

A
implements
Cl_Flipflop_1||CI_Flipflop_2
| | | implements
Cl_FFWSet 1/[CI_FFWSet 2/ CT_FFWSet 3

Figure 3.22: Three Ways To Implement An Extension

We now address the relative advantages and disadvantages of each of the three
approaches to implementing an extension. The direct approach, exemplified by
CI_FFWSet_1 in Figure 3.18, is generally the least attractive of the three alternatives
since it requires implementing the component being extended, in addition to the ex-
tension, from scratch. Both the coupled and layered approaches have the advantage
of reusing existing implementation code. The principal advantage of the direct ap-
proach is that the code implementing the extension operations can have direct access
to data representations which cannot be accessed directly using the layered approach
and which may not be accessible at all to other components (in which case the coupled
approach cannot be used). With direct access to the representation, it may be pos-
sible to implement some extension operations much more efficiently than is possible
with layering. While there is unlikely to be a performance advantage using a direct
implementation in the case of CI_FFWSet_1, we present an example in Section 3.5.3
where the direct approach does provide a significant performance improvement over
the lavered approach.

The coupled approach, exemplified by CI_FFWSet_2 in Figure 3.19, offers the prin-
cipal advantage of the direct approach, direct access of extension operations to data
representations, and one of the main advantages of the layered approach, reuse of
existing implementation code. Thus in some cases, a coupled implementation may be
significantly more efficient than a layered alternative and less costly to develop than a
direct implementation. A disadvantage of the coupled approach is that it typically re-
quires “privileged” access to an existing implementation component in order to break
encapsulation and gain direct access to data representations of types defined within

73

the implementation being extended. We discuss this issne more in Chapter 4. In a
software components industry in which implementation components are distributed
in “black box™ object-code format. coupled implementations of extensions are not an
option except for organizations which have the source code of the implementation
being extended. Finally. justifving that a coupled implementation correctly imple-
ments an extension specification may require significant effort which is not required
when the Tavered approach is used. Edwards discusses the subtleties of this issue in
terms of what he calls “representation inheritance™. a form of extension by conpled
implementation (Edw0g'.

The Tayered approach. exemplified by CT_FFWSet 3 in Figure 3.20. offers sienificant
advantaces over the direct and coupled approaches with relatively minor drawbacks.
As with the coupled approach. the lavered approach reuses the code of an existing
mmplementation of the specification being extended. However. the lavered approach
does not require privileged access to the implementation being extended sinee it views
the implementation in terms of an abstract interface. A major benefit of the lavered
extension implementation is that it can be used to extend any implementation of the
specification being extended. not just a single implementation as is the case with the
coupled approach. This makes it possible to “chain™ together multiple extensions
as shown in Figure 3.21. Lavering also insulates an extension from modifications to
implementations of the specification being extended.

The extension implementation task should be conceptually ecasier with the lay-
ered approach since a software engineer implementing lavered extension operations
only needs to understand the behavioral specification of the implementation being
extended and not any of its implementation details. such as data representations. An
empirical study by Zweben. et. al.. provides evidence that the lavering approach can
lead to hicher programmer productivity and lower defect rates [ZEWH93]. As men-
tioned above. justifving that an implementation extension is correct with respect to
the specification it implements is typically easier for lavered implementations than for
coupled implementations. The reason for this is that operations implemented by lay-
ering cannot violate representation invariants of the implementation being extended
as long as the underlving operations are correctly implemented and called only when
their preconditions are satisfied.

As noted above. the primary disadvantage of layered implementations is that
they may be less efficient than comparable direct or conpled implementations. The
incfficiency arises from the additional operation calling overhead required to invoke
operations of the implementation being extended and. in some cases. arises from a
sicnificantlyv increased algorithmic complexity resulting from the limitations of in-
direct data manipulation. For example. the implementations of Set described by
CI_FFWSet_1 (Figure 3.18) and CI_FFWSet_ 2 (Figure 3.19) are likelv to be more effi-
cient than the lavered implementation of Set described by CI_FFWSet (Figure 3.21).

T

but only by a constant factor. In some cases, the additional operation calling over-
head resulting from layering may be reduced by using optimization techniques such
as in-lining of operations. Another disadvantage inherent to the layering approach is
that clients of layered extensions must instantiate the concrete template defining a
layered implementation in order to generate a useful concrete instance. This problem
may be mitigated by “pre-instantiating” components using a technique called partial
instantiation. We discuss partial instantiation in Chapter 5.

The layered approach to implementing extension specifications is the primary
approach used by the RESOLVE discipline [SW94, p. 41]. In Section 5.6 we present
examples of how layered extensions are encoded in RESOLVE/Ada95.

3.5.3 Extension Of Template Components

On page 64 we listed three distinct relationships which apply to the overloaded
term extends. The extends relationship between two abstract instances was exem-
plified by the relationship AI_FFWSet extends AI_Flipflop. The second relationship,
an abstract template that extends an abstract instance, could be used to express a
deferred dependency on a component used by an extension, but not by the abstract
instance that the extension extends. We include this second definition of extends
for completeness and do not provide an example. In this section we discuss the third
extends relationship between two abstract templates.

Figure 3.23 shows the abstract template AT_SWRev that extends AT_Stack (shown
in Figure 3.10) in accordance with the third, template-to-template, definition of ex-
tends. Since AT_Stack is an abstract template, AT_SWRev must also be an abstract
template. This is the only way that all of the interface defined by AT_Stack can
be included in the interface defined by AT_SWRev as necessary for justifying the
extends relationship. Like AT_Stack, AT_SWRev needs a concrete instance that
implements AI AnyType to provide a definition of the type of element contained
within the stack. The type corresponding to AnyType in the actual parameter bound
to CI_StackWRItemType!* determines the type of elements contained in the stack.
AT_SWRev uses AT_Stack in order to define its interface in terms of the interface
specified by AT_Stack. However, since AT_Stack is an abstract template, its interface
section cannot be re-exported directly as was the case with AI_FFWSet re-exporting
the interface of AI_Flipflop (Figure 3.16).

Since AT_Stack is a template, the meaning of its interface section depends on
the binding of its formal parameter CI_StackItemType. Thus, in order for the re-
exported interface of AT_Stack to have any meaning, CI_StackItemType must be
bound to some concrete instance. Furthermore, for an instantiation of AT_SWRev

14 Note that any formal parameter name would do where we use CI_StackWRItemType. Normally,

we would use the same formal parameter name here as in AT_Stack. However, in this example we
use different formal parameter names in order to make the code easier to understand.

75

specification AT_SWRev
extends 27_Stack

context
uses AT_Stack
uses AI_AnyTypce
needs CI_StackWRItemType implementing AI_AnyType

interface

re-exports AT_Stack with
(Ci_StackItemType => CI_StackWRItemTypc)

procedure Rcverse (s : Stack)
ensures s = REVERSE (#s)

Figure 3.23: An Extension of An Abstract Template

to extend an instantiation of AT_Stack. both specifications clearly need to specifv
stacks with the same tvpe of elements. The re-exports clanse in AT_SWRev addresses
both of these issnes by deseribing the re-exported interface as AT_Stack instantiatecd
with CI_StackWRItemType scerving as the actual parameter for CI_StackItemType.
That s the interface deseribed by an instance of AT_SWRev includes the interface
deseribed by an instance of AT_Stack instantiated with the same conerete instance
used to instantiate AT_SWRev.

tecall that the definition of extends between two abstract templates requires
that for any instantiation of AT_Stack. sav AJ,. there exists some instantiation of
AT_SWRev. sayv .1/,. such that A7, extends A7, (by the definition of extends be-
tween two abstract instances). We claim that AT_SWRev extends AT_Stack for the
following reason. Assume that AT_Stack is instantiated with the concrete instance
C'1 serving as the actual parameter corresponding to AT_Stack’s formal parameter
CI StackItemType. Then any instantiation of AT.SWRev with C'T as the actual param-
cter corresponding to AT_SWRev's formal parameter CI_StackWRItemType extends
the instantiation of AT_Stack with €7 (by the definition of extends between two ab-
stract instances). That is.if AT Stack and AT_SWRev arc instantiated with the same
concrete instance. then the instantiation of AT_SWRev extends the instantiation of
AT.Stack. This implies that any conerete instance that implements an instantiation
of AT_SWRev al<o implements the corresponding instantiation of AT_Stack. We will
look at an example of how these components mav be instantiated after looking at a
component that implements AT_SWRev. '

it

implementation CT_SWRev_1
implements AT_SWRev

context \

uses AIl_AnyType

uses AT Stack

uses AT_Queue

needs CI_StackWRItemType implementing AI_AnyType

needs CI_Stack implementing AT_Stack with
(CI_StackItemType => CI_StackWRItemType)

needs CI_Queue implementing AT _Queue with
(CI_QueueltemType => CI_StackWRItemType)

interface
re-exports CI_Stack
procedure Reverse (s :{ Stack)

g : Queue
x : AnyType

begin
for 1 in 1 .. Length(s) loop
Pop (s, X)
Enqueue (g, X)
end loop
for i in 1 .. Length(g) loop

Dequeue (g, X)
Push(s, x)
end loop
end Reverse

end CT_SWRev_1

Figure 3.24: A Layered Implementation of AT_SWRev

Figure 3.24 shows the concrete template CT_SWRev_1, which is a layered imple-
mentation of AT_SWRev. This implementation reverses a stack by popping each
element off the stack and enqueueing it into a (first-in-first-out) queue followed
by dequeueing each element from the queue and pushing it back onto the stack.
CT_SWRev_1 uses AI_AnyType, AI_Stack, AI_Queue, and implicitly CI_Integer_1 and
CI_Boolean_1. CT_SWRev_1 needs an implementation of AI_AnyType, and implemen-
tations of AT_Stack and AT_Queue, both instantiated with the same concrete instance
serving as the implementation of AI_AnyType.

77

Al_AnyType

needs

implements
needs needs
CT_SWRev _1

Figure 3.25: Behavioral Relationships of CT_SWRev_1

From a component maintenance perspective. we largely can ignore CT_SWRev_1's
dependencies on AT AnyType. CI_Boolean 1. and CI_Integer_1'" since these com-
ponents are fixed by the language and will not change. Thus CT_SWRev_1's needs
relationships with AT_Stack and AT_Queue siummarize the critical design dependen-
cies for this component.

Figure 3.25 is a CCD that shows CT_SWRev_1 and the component relationships
pertinent to understanding the behavior of and use of CT_SWRev_1. The thick arrows
(needs and extends with uses) depict conpling or dependency relationships. The
thin arrow (implements) depicts a purely behavioral relationship. The implementa-
tion behavior encoded by CT_SWRev_1 depends on the behavior specified by AT_Stack.
AT Queue. and AI_AnyType. \While AT_SWRev may be used as a specification of the
behavior of CT_SWRev_1. the behavior implemented by CT_SWRev_1 in no wav depends
upon AT _SWRev. Thus only changes to AT_Stack and AT_Queue could alter the behav-
ior described by CT_SWRev_1. Note that Figure 3.25 does not encode the requirement
that CT_SWRev_1. AT_Stack. and AT_Queue must all he instantiated with the some im-
plementation of AT AnyType. The component instantiation diagrams (CID’s) shown
i Chaprer 5 convey more detailed information such as this.

Fignre 3.26 shows the code deseribing an instantiation of CT_SWRev_1. The con-
crete instance CILFFSWRev describes an implementation of a stack of flip-flops pro-
vidine a stack Reverse operation. CI_FFSWRev implements AT_SWRev instanti-
ated with CI_Flipflop.3. Recall that the code deseribing the conerete instances

1"CT_SWRev's fixed dependeney on CI_Integer_1 could be significant to a maintainer sinee the
latter detines an implementation-dependent maximum Integer value. However. an ~unbounded”
stack as specified by AT_Stack would not he appropriate for applications in which the stack's length
conld porentiallv grow larger than the maximum Integer value.

s

implementation CI_FFSWRev
implements AT SWRev with
(CI_StackWRItemType => CI_Flipflop_3) .
by CT_SWRev_1 with
(CI_StackWRItemType => CI_Flipflop_3,
CI_Stack => CI_Flipflop_Stack,
CI_List => CI_FLipflop_List)

Figure 3.26: Instantiation of CT_SWRev_1

CI_Flipflop_Stack and CI_Flipflop_List was shown in Figure 3.13. The imple-
ments relationship between CI_FFSWRev and AT_SWRev can be justified here only
because all of the template components involved have been instantiated with the
same concrete instance, CI_Flipflop_3, as the stack element type.

Since CT_SWRev_1 is a layered implementation of AT_SWRev, it may be used to
extend any component that implements AT_Stack but does not depend on any
other implementation components. Despite these advantages, the layered approach
precludes an efficient constant-time Reverse operation in this case. The Reverse
operation encoded in AT_SWRev executes in linear time with respect to the length of
the stack being reversed. A stack Reverse operation layered on top of the interface
provided by AT_Stack can do no better than linear time. A client application that
needs to reverse stacks frequently, might justify creating a direct implementation of
AT_SWRev with a Reverse operation that runs in constant time.

Figure 3.27 shows the concrete template CT_SWRev_2 which we claim implements
AT_SWRev. This is a direct implementation of AT_SWRev since it defines its own
stack representation and implementations for Push, Pop, and Length in addition
to Reverse. CT_SWRev_2 needs an implementation of AT _Two _Way_List, a specifica-
tion similar to AT_One_Way_List except that it includes a Retreat which, along with
Advance, supports traversal of the list in both directions. A two-way list has the
same model as a one-way list, a pair of strings. The representation of type Stack has
two components: a (two-way) List labeled holder and a Boolean labeled left_top.
left_top is used to keep track of which end of the list represent the top of the stack.
When the value of 1left_top is True, the portion of the list corresponding to the right
string represents the stack with the stack top being the left-most element in the right
string. When the value of left_top is False, the portion of the list corresponding to
the left string represents the stack with the stack top being the right-most element

" in the left string. Using this representation, the Reverse operation is implemented

by simply changing which end of the list currently represents the top of the stack.
Achieving a constant time reverse operation does require slightly more complex
and slower implementations of Push, Pop, and Length since each of these operations

79

implementation CT_SwWReov_2
implements A7 _SvRev

context
uses 4Al_AnyTypce
uses 7.T_Two_Way_List
needs CI_StackltcemType implementing AI_AnyTypo
needs CI_List implementing AT_Two_Way_List with
(CI_ListItemTypc => CI_AnyTypeo)
interface
type Stack is represented by
holder : List
left_top : Boolean := Truc

end representation
exemplar s_rep
convention if s_rep.left_top then
s_rep.holder.left = EMPTY_STRING
else
s_rep.holder.right = EMPTY_STRING
correspondence if s_rcp.left_top then
s = REVERSE(s_rcp.holder.right)
else .
s = s_rcp.holder.left

procedure Push (s : Stack, x : AnyType)
begin
Add_Right (s.holder, x)
if rot(s.lecft_top) then Advance(s.holder) end if
end Push

procedure Pop (s : Stack, x : AnyTypc)
begin
if not(s.lecft_top) then Retreat(s.holder) end if
remove_Right (s.holder, x)
end Pop

function Length (s : Stack) : Intecger
begin
if s.lcft_top then return (Right_Lenagth(s.holder))
else return (Left_Length(s.holder)) end if

end Lcngth

procedure Rcverse (s : Stack)
begin
if s.lcft_top then Move_To_Finish(s.holder)
else NMove_To_Start(s.holder) end if
s.lcft_top := not(s.left_top)
end Recverso
end CT_SWRev 2

Figure 3.27: A Direct Implementation of AT_SWRev

must test for which end of the list represents the top of the stack. An implemen-
tation of a two-way list also is likely to require more memory than a one-way list
implementation. Nevertheless, if a fast reverse operation is important to the client
application, then the direct implementation approach is justified in this case. Note
that a coupled implementation is unlikely to be of use in this situation since the
implementations Push, Pop, and Length, as well as the data representation, must be
specifically designed for a constant-time reverse operation.

3.6 Behavioral Substitutability of Components

With the relationships we have defined, it is now very simple to characterize when
one software component is substitutable for another. Since an integrated system
consists of all concrete instances (e.g., Figure 3.14(a)), component-level system main-
tenance involves replacing one concrete instance with another. However, a maintainer
cannot replace one concrete instance with another without knowing the behavioral re-
quirements the system has for the component being replaced. Two different concrete
instances may be substitutable with respect to one specification, but not with respect
to another. Therefore, the substitutability relationship is a ternary relationship in-
volving two concrete instances and an abstract instance identifying the minimum
behavioral requirements of the system for both concrete components.

For concrete instances C; and C5, and abstract instance A, we define the behav-
ioral substitutability relationship as follows:

is.sub(Cy, Cy, A) = C; implements A A (5 implements A (3.1)

This relationship may be read as “C5 is substitutable for C; with respect to A”.
Although the behavior implemented by C; and C, may differ in a variety of ways,
both components provide the behavior specified by A (assuming the implements
relationships are justified). For a concrete template that needs A, either C; or Cy
will satisfy the requirement.

As an example, consider again Figure 3.22 on page 73. Given the relationships
shown in this figure, CI_Flipflop-1 is substitutable for CI_Flipflop_2 with respect to
AI_Flipflop and conversely, CI_Flipflop_2 is substitutable for CI_Flipflop_1 with
respect to AI_Flipflop. Any two of CI_FFWSet_1, CI_FFWSet_2, and CI_FFWSet_3,
are substitutable with respect to AI_FFWSet. Furthermore, any two of these three
extension implementations are substitutable with respect to AI_Flipflop since each
implements AI_Flipflop. Finally, each of the three extension implementations
are substitutable for either of CI_Flipflop_-1 or CI_Flipflop_-2 with respect to
AT Flipflop. However, CI_Flipflop-1 is not substitutable for CI_FFWSet_1 with
respect to AI_FFWSet since CI_Flipflop-1 does not implement AI_FFWSet. '

81

3.7 Chapter Summary

In this chaprer we built on the more formal relations developed in Chapter 2 to de-
fine a useful set of component relationships. Section 3.1 introdnced a notation hased
on RESOLVE and Ada for encoding specification and implementation components.
The uses relationship. defined in Seetion 3.2, records any form of fixed dependency
of one component upon another. Any type of component (abstract or conerete. tem-
plate or instance) mav use any other tvpe of component. If component ('} uses
component Cy. then € either refers divectly or indivectly to (% (possibly implicitly)
for the purpose of deseribing C')'s hehavior in terms of the behavior deseribed by €.
Since the behavior deseribed by a component will. in general. he influenced by any
other component that it uses. clearly documenting this relationship is important for

software maintenance,

The implements relationship. defined in Section 3.3, records the conformance of
an implementation component to a specification component. Recording this relation-
ship is useful for establishing substitutability properties. for stating its requirements
for verification of correctness, and for documenting its “advertised”™ behavior. The
imps relation. in terms of which implements is defined. is a relation defined over
the sets of conerete instances and abstract instances. We have defined implements.
however. as three related. but distinet. relationships. The three signatures of the
implements relationships. listed in the left column of Table 3.1. correspond to: a
concrete instance that implements an abstract instance. a concrete template that
implements an abstract instance. and a concrete template that implements an
abstract template, respectively,

The extends relationship. defined in Section 3.5, records the conformance of one
abstract component to another. Recording the extends relationship is useful for
establishing substitutability properties and for specifving the hehavior of one compo-
nent in terms of another component. Like implements. the name extends applies
to three related. but distinet. relationships. The three signatures of the extends
relationships. listed in the left column of Table 3.1, correspond to: an abstract in-
stance that extends another abstract instance. an abstract template that extends
an abstract instance. and an abstract template that extends another abstract tem-
plate. respectively. In Section 3.5.20 we deseribed the direct. coupled. and lavered
approaches to implementing an extension component and provided examples of each
approach.

The needs relationship. defined in Section 3.4 records a hehavioral requirement
of a component as a deferred or polymorphic dependeney. Using the needs rela-
tionship to express requirements. prevents unnecessarily coupling implementations
and lavs the fonmdation for improvements throngh component substitution. Used in

&2

implements

concrete component C' implements abstract component A iff C
provides an implementation of all behavior specified by A
CI x Al imps(C, A) holds
CT x AI | for any instantiation C” of C, imps(C”, A) holds
CT x AT | for any instantiation C' of C, there exists some instantiation A’
of A, such that imps(C’, A’) holds. ’
extends abstract component A, extends abstract component A; iff every
concrete component that implements A, also implements A;
Al x AT exts(As, A1) holds
AT x AI | for any instantiation A} of A,, exts(Aj), A;) holds
AT x AT | for any instantiation A5 of Ay, there exists
some instantiation A} of A; such that exts(Aj, A7) holds
uses component C; uses component Cy iff the meaning of C; depends
either directly or indirectly on the meaning of Cs
needs concrete template C' needs abstract instance A iff C uses A and
for all instantiations of C, C’s references to elements in A are
replaced by references to the corresponding elements in some
concrete instance that implements A
is_sub concrete instance Cy is behaviorally substitutable for C; with

respect to abstract instance A (is_sub(C’Q7 Ci, A)) iff
C, implements A and C; implements A

Table 3.1: Summary of Component Relationships

83

conjunction with the implements relationship. the needs relationship isolates im-
plementation components from each other prior to system integration and encourages
the development of modunlarly verifiable components.

Finallv. in Section 3.6, we defined the is_sub relationships which holds when
two concrete instances are substitutable for one another with respecet to a common
specification an abstract instance. Designing. implementing. and documenting
software components using the implements. extends. needs. and when necessary.
the uses relationships. is an important step toward component-level maintenance of
software svstems,

&1

CHAPTER 4

PROGRAMMING LANGUAGE SUPPORT FOR
BEHAVIORAL RELATIONSHIPS

In this chapter we examine how the component relationships described in Chap-
ter 3 may be encoded in modern programming languages. We primarily focus on
programming languages such as Ada and C++ which have an established user base
and are generally regarded as useful for constructing large component-based software
systems. Complex programming languages such as these provide many mechanisms
which make possible a variety of approaches to encoding software components. The
language mechanisms of primary interest are those supporting techniques for achiev-
ing modularity, information hiding, polymorphism, and extendibility. These four as-
pects of software engineering roughly correspond to the benefits associated with use
of the uses, implements, needs, and extends relationships, respectively.

Section 4.1 begins this chapter with a review of the goals of an approaches to
modularity, information hiding, polymorphism, and extendibility. The following sec-
tions discuss how programming language mechanisms may be used to encode the
uses, implements, extends and needs relationships. Section 4.6 summarizes this
chapter.

4.1 Language Support for Component-Based Software Engi-
neering

Many authors have written about how programming languages can provide sup-
port for building reusable software components. Most detailed discussions of lan-
guage mechanisms supporting component-based software focus on the features of a
single language such as Ada [Boo87], C++ [CE95], Eiffel [Mey94] and RESOLVE
[Har90]. Some books on object-oriented programming languages (OOPL’s) com-
pare how the mechanisms of different OOPL’s support software reuse (for example,
[Cox86, Bud91]). Edwards provides a detailed analysis of how well four languages
— OBJ, RESOLVE, Eiffel, and Standard ML — support component-based software
engineering [Edw95, pp. 165-183]. There is a wide variety of opinions about what

85

combination of specific langnage mechanisms best supports component-based software
engineering. Nevertheless: there is general agreement that language mechanisms that
support modularity. information hiding. polvmorphism. and extendibility are partic-
ularly nseful.

4.1.1 DMlodularity

Modnlarity in the design and implementation of software involves partitioning a
software svstem into constituent “parts” modules. The benefits of modularity are
well established. Modular design is a primary tool for managing complexity using ab-
straction. Decomposing a large system into smaller. conceptnally simpler units makes
a system specification easier to nnderstand and implement. Compared to a monolithic
implementation. a modular implementation should be casier to understand. test. do-
bug. and maintain. Furthermore. if modules are well-designed. the modular approach
supports software rense,

Component-based software engineering assumes that complex svstems will be con-
structed from software components modules. Programming languages supporting
this approach mmst therefore provide some unit of modularity for defining compo-
nents. The top-down or “structured”™ approach to analvsis and desien of software
svstems became popular in the 1970°s [SNC7A). This approach advocates funetional
decomnposition of systems. Funetional decomposition focuses on process abstraction
and lTeads to operations as the primary unit of modularity, With this approach. indi-
vidual operations serve as components and component librarvies primarily consist of
collections of subroutines.

Object-oriented analyvsis and design. which began to gain popularity in the 1980,
takes a different approach to modularity which leads to different kinds of components
ParT2. MexST. Boo91. The object-oriented approach focuses on data abstraction
and decomposition of svstems based on data structures rather than functionality.
The primary rationale for the object-oriented approach is hased on observation of
how most large software syvstems change over time. The data structures of svstems.
when viewed abstractlv. tend to be fairly stable over time. Svstem functionality,
however. tends to change to a much greater extent. The object-oriented approach
views a system component primarily as an abstract data tvpe (ADT) which specifies
a tvpe. operations on that type. and local state for representing the value of objects of
the type. With this approach. components mav contain data structures and multiple
operations,

AMany modern programming languages provide mechanisms for encoding compo-
nents that encapsulate both data structures and operations. In OOPL's such as
Stmnla. C—=_ Eiffel and Java the primary unit of modularity is the closs. A class
serves double duty as a mechanism for bhoth encapsulation and definition of user-
defined tvpes. C++ and Eiffel support parameterized classes (templates) which are

86

very useful for encoding the relationships described in Chapter 3. In other languages
such as Ada, Modula-2, and ML (all strongly typed languages) the mechanisms for
defining modules and types are distinct. An Ada package, a Modula-2 module, and
an ML module may declare multiple types accessible by other components in addition
to operations and local data structures'®. Both Ada and ML provide strong support
for parameterized components with generic packages and functors, respectively.

4.1.2 Information Hiding

Information hiding, also called encapsulation, is a technique for achieving ab-
straction whereby some features of a component are made inaccessible to (they are
“hidden” from) other components. As with modularity, the benefits of information
hiding are well known and most programming languages provide mechanisms sup-
porting some form of information hiding. Information hiding may be used to restrict
and simplify the way in which clients may interact with implementation components.
By preventing client access to implementation details such as data representations,
implementations may be changed without changing the “non-hidden” interface of
a component. This reduces coupling between implementation components, supports
making localized changes without global affects, and results in software systems which
are easier to maintain. _

In addition to simplifying a client’s view of a component, information hiding used
in conjunction with behavioral specifications may support re-conceptualization of a
software component. That is, the “cover story” provided by a behavioral interface
description (a specification component) might be quite different from the description
provided by implementations of the specification. As a simple example, consider
AI_Flipflop (Figure 3.1) used as the specification of CI_Flipflop_2 (Figure 3.2).
AI_Flipflop not only hides the INTEGER model representation of CI_Flipflop-2,
it portrays — we might even say “lies about” — the implementation as having a
BOOLEAN model. In this case the BOOLEAN model serves as a simpler, more abstract
cover story for the actual representation of CI_Flipflop_2. One of the goals in the
design of behavioral interface specifications is to convey to clients a useful mental
model of the behavior exhibited by conforming implementations [Edw95, pp. 7-12].
In order to achieve simplicity and allow for a variety of differing implementations, the
mental model described by a specification component may be significantly different
from the model of any particular conforming implementation. :

Programming languages provide a wide variety of tools for achieving information
hiding at the component level. A common approach is to declare certain features of
a component as “public” and others as “private”. Types, operations, and variables

16 Although Ada95 packages may export multiple types, only a single extensible “tagged” type
-may be defined within a package and extended using inheritance. With this limitation, the object-
oriented model supported by Ada95 is similar to that of C++.

87

which are public mayv be directly referenced by (are visible to) client code. Features
declared as private are onlv visible within the component in which theyv are defined
thus achievine information hiding. In OOPL’s. the data representation for the type
defined by a class is tvpically represented by insfance variables of the class. If the
instance variables are declared as private. then the data representation of the class
i hidden. C—— classes may define operations and variables with the three visibility
modifiers: public. private. and protected. A variable or operation declared as
private onlyv is visible within the defining class. A protected operation or vari-
able only is visible within the defining class and all sub-classes (classes linked by
inheritance) of the defining class, Java has these three visibility categories plus two
additional ones'. In Eiffel. all ¢lass features are private unless theyv are explicitly
declared as “exported™ in which case they are public,

As noted above. Modula-2 modules. Ada packages. and ML modules may define
and export mnltiple tvpes nnlike classes in most OOPL's. In these langnaces, ADT's
correspond to exported types with hidden data representations. Modula-2 modules
and Ada packaces consist of separate header and body parts. typically placed in
separate files. The representation of a Modwla-2 opaque type is hidden by declaring
11> visible representation as a pointer in the definition module. the header part. and
declaring the referenced data structure in the private implementation module, the
body part. An Ada private type is declared twice in an Ada package specification. the
header part. A private type is first declared in the public section without providing
a representation. and then in the private section with its representation. Although a
client Tooking at an Ada package specification can “see” a private type’s representa-
tion. client code does not have visibility to any tvpes. operations. or variables declared
i the private seetion of a package specification. Tyvpes. operations. and variables de-
clared and implemented in the package body. but not declared in the public section
of the packace specification are completely hidden from clients of the package,

ML provides at least fonr different approaches to information hiding at the mod-
nle level U5 p. 1631 The approach of using MI. signatures to hide information
contained in ML structures corresponds very closely to using specification compo-
nents to hide information contained in implementation components as shown in the
examples in Chapter 3 and modeled by ACTI [Edwos. §1.13.3]. ML sienatures are
modules that only may contain type names (with no representation). value names
with their associated tvpe sicuature (bhut no value). and varions other specifications.
In ML functions are treated as values. A value name and tvpe signature may either
he an ordinary variable and its data tvpe or the name of an operation and its param-
cter profile. A structure is a module that mayv contain tvpe representations. values

including function implementations. and various other elements including nested
substructures. Thus a signature module corresponds to a specification component

""Java's private protected is equivalent to protected in ('++4. Java's protected and default
visihility take into consideration the Java “package™ in which the classes are definod.

&<

(with no language support for behavioral specifications) and a structure module cor-
responds to an implementation component. We discuss the relationship between ML
signatures and structures further in Section 4.3.

4.1.3 Polymorphism

Polymorphism literally means “many forms”. Within the context of programming
languages, polymorphism refers to the situation in which a single name, such as a
variable name, may be used to denote values of different types or objects of different
classes. Cardelli and Wegner survey and classify a variety of techniques for achieving
polymorphism [CW85]. They identify the two primary kinds of polymorphism as
parametric polymorphism and inclusion polymorphism. Parametric polymorphism is
achieved by using templates and inclusion polymorphism, also called subtype polymor-
phism, is achieved by using inheritance and typically dynamic binding of operations.
Note that the term “polymorphism” is frequently used specifically to refer to sub-
type polymorphism with dynamic binding of operations, especially within the object-
oriented community. As do Cardelli and Wegner, we use the term in the broader
sense to include parametric polymorphism.

Techniques for achieving polymorphism support the design and implementation
of components which are less coupled to other components than would be possible
without polymorphism. This can help in attaining system maintainability, compo-
nent reusability, and component substitutability. Budd nicely summarizes the role of
polvmorphism as follows.

Polymorphism in programming languages permits the programmer to gen-
erate high-level reusable components that can be tailored to fit different
applications by changing their low level parts. [Bud91, p. 88|

This characterization of polymorphism also describes the role of the needs re-
lationship between a concrete template and an abstract component as discussed
in Section 3.4. Consider the implementation CT_Threeway_1 shown in Figure 3.8.
CT_Threeway_1 provides an example of parametric polymorphism. Since the repre-
sentation of the concrete type Threeway is constructed from an implementation of
AI_Flipflop supplied as a parameter, Threeway may be considered as a polymorphic
type describing many different implementations (forms). The different implementa-

~ tions are all of the possible instantiations of CT_Threeway. The operations Advance

and On defined by CT_Threeway_1 may be considered as polymorphic operations which
manipulate (flip-flop) objects of many different types. As we discuss in Section 4.5,
it is also possible to encode the needs relationship using subtype polymorphism.
By the generally accepted definition of an OOPL, all OOPL’s include inheritance
and dynamic binding and thus the mechanisms necessary for subtype polymorphism.
Statically typed OOPL’s such as C++, Ada (Ada95), Java, and Eiffel as well as dy-
namic type checking OOPL’s such as Smalltalk all support polymorphism in the form

89

of subtvpe polvmorphisi. Parametric polvmorphism is supported in a variety of lan-
gnages. Parameterized components may be encoded using ML functors. Ada generic
packaces. C—= templates. and Eiffel generie classes. Note that Ada. C++. and Eiffel
tand several other. primarily rescarch. languages) provide support for both subtvpe
and parametric polvmorphism. The mechanisms supporting these two forms of poly-
morphism may he used in combination to achieve useful results. We provide examples
of the combined use of parametric polvmorphism and inheritance in Chapter 5.

4.1.4 Extendibility

Extendibility refers to how easy it is to extend the functional behavior of an
existing component-based system and thus how casy it is to extend the hehavior
deseribed by software components. In Section 2.1.1 we discussed the inevitable need
for chanees to software systems. Perfective maintenance. which addresses changes
in functional requirements. accounts for the largest portion of all maintenance costs
LBSBRO. Since new funetional requirements nearly alwavs call for additional system
functionality (as opposed to reduced system funetionality). extendibility is a highlv
valued characteristic of software systems.

Any software for which the source code is available is “extendable”™ in the sense
that the source code can be modified to add new functionality. However. the goal
of desiening and implementing extendable components is to bhe able to extend the
functionality of existing components with minimal disruption to svstems that use
those components. When extending the functionality of an existing component or
component-hased svstem. we want to modify the code of existing components as little
a~ possible. Minimizing changes to existing component code minimizes: introduction
of bues and unexpected hehavior, retesting and recertification. and possibly expensive
svstem re-builds (e.g.. extensive recompilation).

To some extent. there is a trade off between information hiding and extendibil-
itv. Extending a component that makes its internal details accessible (public) mav
he casier and result in a more efficient implementation of the extended funetionality.,
Hovever,as disenssed in Seetion 3.5.20 there is a price to pay for such weak encapsu-
lation. A number of authors have discussed this trade-off in the context of OOPL's
SGO AW Suv8G. The Tavered approach to implementation extension deseribed
in Section 3.5.2 provides an example of how strong encapsulation mayv be maintained
while still supporting extendibility,

In general. langnage mechanisms supporting modularity. information hiding. and
polviorphism are also nseful for supporting extendibility. The language mechanism
most associated with extendibility is inheritance which is provided in one form or
another by all OOPL's. Inheritance is a convenient mechanism for describing how
one component differs from another. However, inheritance is used for many different
purposes in addition to extension of components. In presenting a taxonomy of the

90

uses of inheritance, Meyer describes 12 distinct “valid” uses for inheritance [Mey96].
Under the general category of model inheritance, Meyer includes subtype inheritance
which does not involve inheritance of data representations or operation implementa-
tions. Subtype inheritance is used to express and enforce a conformance relationship.
We refer to this use of inheritance as specification inheritance. The most common
use of inheritance involves inheritance of data representations and operation imple-
mentations. This use of inheritance is often called subclassing. We refer to any use of
inheritance that falls into this category as implementation inheritance. What Meyer
calls “extension inheritance”, a uses and subtyping relationship between implemen-
tations, and “implementation inheritance”, a uses relationship based on inheritance
but not implying subtyping, both fall into this category.

Many authors have written about the problems that can arise from using one
programming language mechanism, inheritance, for several distinct purposes [Tai96,
Cla95, Edw93, C0090]. Several newer. OOPL’s address these problems by using dis-
tinct language mechanisms for encoding (structural aspects of) specification inheri-
tance and implementation inheritance. Java is the most widely used language that
has different mechanisms for specification inheritance and implementation inheri-
tance. We discuss these aspects of Java in Sections 4.3.4 and 4.4. Other new OOPL’s
that also use different language mechanisms for specification and implementation in-
heritance include Theta, a language primarily based on CLU [LCD*94], Sather 1.0,
a language based on Eiffel [SOM94], and Pizza, a superset of Java [OW97]. Note
that unlike Java, Theta, Sather, and Pizza all support parametric polymorphism in
addition to inclusion polymorphism.

The hierarchical library structure introduced into Ada with the 1995 language
revision provides a unique approach to component extension not found in other pro-
gramming languages. In Ada, any library unit (a package, subprogram, or generic
unit) may be extended by a child unit. The visibility of a child unit includes full
visibility of its parent unit including the parent’s private section. The presence of a
child unit, however, does not affect the parent unit or any components which depend
on the parent unit. Child and parent units may be compiled separately and adding
a child unit does not require recompilation of the parent unit. The child unit mecha-
nism is orthogonal to Ada’s inheritance mechanism. However, as we demonstrate in
Chapter 5, these two language mechanisms may be used in combination.

4.2 Encoding The uses Relationship

As discussed in Section 3.2, the uses relationship represents a fixed dependency
between two software components. If component X uses component Y, then X in
some way depends on Y. The uses relationship provides no information on how Y
is used by X; but without access to component Y, the meaning of component X is
incomplete. With some programming languages, the source or object code of ¥ must

91

he available in order to compile the source code of X, Other languaces. however, mav
not require that the code of 37 be available to X until system integration time (link
time) or even until runtime.

Some programming languages require explicit encoding of the uses relationship
between components. The visibility rules of the language largely dictate what is
recuiived for one component to refer to elements defined by another component. In
the examplesin Chapter 3. a uses clause in context section directly encoded the uses
relationship. T the case where X uses Y. we assumed. for simplicity, that all elements
defined in the interface of Y could be referenced directly within X without name
aqualification (unless necessary to resolve overloading). In some languages there is a
separate mechanism for allowing abbreviated reference to components and elements
defined within other components.

In some cases. a uses clause in the Chapter 3 examples conveys redundant in-
formation that mayv be deduced from other parts of the component. For example,
since the needs clanse alwayvs entails a uses relationship we could have omitted all
uses clanses for components subsequently included in needs clanses. Also. uses
clanses conld be omitted for each component mentioned in a re-exports clanse. We
choose to require a uses clanse for each uses relationship to make it perfectly clear
in the source code on what other components a given component directly depends,
This information is eritical for component understanding. maintenance. and program
analvsis. and shonld not be obseured in anv wav.

One characteristic that further distinguishes among programming languages sup-
porting component-based software engineering is the distinetion between components
and data tvpes. In Ada and langnages based on Niklans Wirth's Modula (NModula-2,
Modula-3. Oberon. and Oberon-2 [Wirg2. RW92]). a component (a package or mod-
uleris ot adata type. Tn these languages. the uses relationship is explicitly encoded.
In most OOPL'S"™ . however. a component. tvpically called a class. is a user-defined
tvpe from which objects may be declaved. Partly as a result of this distinetion. most
OOPL's do not require a class to explicitly list all other classes that it directly uses.

In Ada.a with clanse placed in the context section of a package encodes the direct
uses relationship between two packages. If an Ada package. sav package X, needs to
refer to some element defined in another package. sav package Y. then X must include
a with clanse naming Y In general. an Ada package only mayv be compiled when all
packaces upon which it depends have been compiled and are available in the program
librarv. This strategy helps ensure that structural errors are detected as carly as

A fAda05 . Modula-3. and Oberon all have language mechanisms supporting object-oriented
programiming. The support these langnages provided for modularity has been carried over from
their non-object-oriented precursors. AdaS3 for Ada and Modula-2 for Oberon and Modula-3.

Al Ada packaces implicitly have visibility to the special package Standard which defines Ada's
bil-in types and operations. Also. packages defining child units (discussed in Chapter 5) have
visibility to their parent unit but do not require a with with clause naming their parent. Instead.
the parent unit name is a4 prefix of the child unit name.

92

possible. Note that Ada’s use clause allows components to reference public elements
defined in with’ed packages without using their fully qualified names. Chapter 5
includes examples showing the use of Ada’s with and use clauses.

In the Modula and Oberon family of languages, the IMPORT clause “imports”
(makes visible) elements from another module in much the same manner as Ada’s
with clause. In Modula-2 and Modula-3 it is possible to selectively import features
exported by another module by using a clause of the form “FROM M IMPORT X” where
M is a module name and X is an explicitly exported (public) element defined in M. A
module that includes this form of IMPORT clause may refer to the imported element
X directly instead of using the qualified name M.X. Oberon does not have this form of
IMPORT clause since its designer believed that explicit qualification of imported names:
is preferable, especially when many modules are involved [RW92].

In typed OOPL’s such as Java and Eiffel, there are two ways in which one class
may have a fixed dependency on another. First, class X may be a subclass of class Y,
in which case X uses Y. This form of dependency is encoded using an inheritance
mechanism such as the inherit clause in Eiffel and the implements and extends
clauses in Java. Second, X may be a client of Y without being a subclass of Y. In-
this case, X uses the name Y as a data type for declaring an object or parameter. (In
Java, Y could also be used within X for type casting.) When X is a client, but not a
subclass of ¥, most OOPL’s do not require any sort of “import list” that in a single
place names all fixed dependencies on other components. Meyer, in describing Eiffel
[Mey88, p. 211], and Stroustrup, in describing C++ [Str93, p. 416], both note that
such an import list, would be redundant and could be automatically generated by a
tool. Without the aid of such a tool, however, a maintainer must search for class names
throughout a given class in order to determine all inter-component dependencies.

To avoid possible confusion, we note that Java does have an import statement.
However, the purpose of Java’s import statement is to allow a class to refer to
other classes using abbreviated names rather than fully qualified names. Thus Java’'s
import statement serves essentially the same role as Ada’s use clause.

Like most other OOPL’s, C++ does not directly support encoding of the uses
relationship between a class and the other classes of which it is a client but not a sub-
class. However, a common C++ idiom is to use the preprocessor directive #include
to textually insert a C++ header file containing a class interface into another file that
uses the interface. If, by discipline, each class is associated with a single header file
that declares its interface, then #include may be used to encode the uses relation-
ship between two classes. If client class X #include’s the header file for class }’, and
we assume that at link time X will get linked to the class definition for Y, then it
is reasonable to consider the #include directive a direct encoding of the uses rela-
tionship. Note that in the case of specification components represented as abstract
classes, there need not be an associated class definition to a class header file.

93

To snmmarize. in most OOPL’s a module is a class which is a data tvpe. In this
case. the set of fixed dependencies of component X corresponds to all data tvpes
referenced within X excepting the tvpe X itself and certain built-in tvpes. These
lancuaces do not require explicit encoding of the uses relationship and a tool mav he
necessary to identify and smmmarize such dependencies. Langnages such as Ada and
the Modula family of langnages. in which the mechanisms for defining components
and data types are distinet. provide direet support for encoding the uses relationship
in the form of an import list.

4.3 Encoding The implements Relationship

In Section 3.3 we defined the implements relationship which is based on the
imps relation defined in Section 2.3.1. The motivation for establishing and clearly
documentine the implements relationship was discussed in these seetions and also in
Section 2.1, In this seetion we disenss how varions programming language mechanisms
may be used to encode the elaim®® that the implements relationship holds between
two components an implementation and a specification.

The primary reasons for explicitly encoding the implements relationship are:

e to provide information used to determine appropriate component composition.
e to indicate an oblication for conformance checking, and

e 10 help document the claimed behavior of implementation components,

At component integration time. a record of the implements relationship mav
be used by a linker or other tool to determine which component compositions are
appropriate and which are not. For example. if conerete component X needs abstract
component Y and conerete component Z implements Y. then it is appropriate for
N to be instantiated with Z. An encoded implements relationship also may require
a compiler to check structural conformance hetween the related implementation and
specification. Similarly. the implements relationship may generate proof obligations
for a verification tool or testing requirements in order to aid in confirming behavioral
conformance hetween two components. By associating an implementation with a
specification to which it must conform. the implements relationship also serves as
dociumentation useful to a software engineer working directlv with the source code of
an implementation,

“'For brevity, we will tvpically use the phrase “encoding an implements relationship™ to mean
more aceurately “encoding the elaim of an implements relationship™.

01

4.3.1 The implements Relationship and Coupling

Recall from Chapter 3 the components CI_Flipflop_2 and CI_Flipflop_3 (Fig-
ures 3.2 and 3.5, respectively). Both components implement AI_Flipflop (Figure 3.1)
and both describe identical operational behavior. The difference between these two
components is that CI_Flipflop_3 uses AI_Flipflop while CI_Flipflop_2 does not.
There is no réason, in general, why a concrete component must depend on an abstract
component which it implements. However, many of the language mechanisms most
useful for associating specifications and implementations couple implementation com-
ponents to the specification components which they implement. Thus in most lan-
guages, encoding the relationship C' implements A requires that C uses A. We
discuss a few interesting exceptions to this in Section 4.3.5. ‘

There are several reasons why it is useful for an implementation component to
depend on a specification component which it implements. Stating a (claimed) im-
plements relationship in the source code serves as documentation identifying a spec-
ification of the component’s implemented behavior (although not necessarily all of the
implemented behavior). For documentation only purposes, however, an implements
statement may be treated as a semantically irrelevant comment ignored by compilers
and other processing tools. That is, there need be no syntactic or semantic depen-
dency just to achieve this documentation objective, and thus no uses relationship
between the two components. ,

As with CI_Flipflop_3, a concrete component may refer to specification (non-
programming) elements of an abstract component which it implements. Assuming no
renaming of types, operations, or variables (programming elements) defined in the ab-
stract component, this level of reference is sufficient for expressing the correspondence
(abstraction relafion). As we discussed in Section 3.3, recording the correspondence
is an important aid to justifying the implements relationship. In this case, the
implementation uses the specification, but not in the normal “compilation depen-
dency” sense. A typical compiler could process such an implementation component
without examining the implemented specification component. In RESOLVE/Ada95,
discussed in Chapter 5, specification elements are encoded as comments which are
ignored by Ada compilers.

One of the main reasons programming languages require implementation com-
ponents to be coupled to interface specification components is to support structural
conformance checking. That is, language mechanisms useful for encoding the imple-
ments relationship — most notably inheritance mechanisms — typically require the
compiler to check that the structure of the implementation conforms to that of the
specification. We discuss conformance checking below in Section 4.3.2.

Despite these reasons for making an implementation dependent upon the specifi-
cation(s) that it implements, there are some potential disadvantages to this common
approach. For example, if the content of a concrete component must explicitly name
any abstract components that it implements, then establishing a new implements

95

relationship (not derivable from existing relationships) for an existing conerete coms-
ponent will tvpically require modifving the implementation’s souree code and poten-
tallv expensive recompilation. A few languages such as ML and C++ with sienatures
BROT provide support for encoding the implements relationship without reuinr-
ine that implementations refer to the specification components they implement. We
consider an example of this in Section 1.3.5.

4.3.2 Conformance Checking

Prior to placing a conerete component into a component library and making it
available for elient nse. we obviously want to have some confidence that it will behave
as “advertised” when integrated into a svstem. A component’s advertised hehavior
i~ the behavior specified by the abstract components which it implements. Confor-
mance checking is the process of determining to some level of confidence that a
concrete component correctly deseribes an implementation of the behavior specified
by an abstract component which it implements. In order for an implements rela-
tionship to be justified. the structure and behavior of the conerete component must
conform to that of the abstract component.

For most programming languages. cheeking structural conformance is a relativelv
straichtforward task carried out by a compiler or interpreter. This involves ensur-
ine that all tvpes. operations. and variables specified in the abstract component are
matched by compatible conerete types. operations. and variables in the (client-visible
part of) the conerete component. The type svstem of the langnage determines the
rules for conformance. For languages that support type extension (inclusion polv-
morphism) and parameterized types (parametric polvmorphism). the rules for deter-
mining what constitntes a match can hecome somewhat complex [CW85, LW0.4].

As we have discussed in earlier chapters. very few programming languages in-
clide mechanisims supporting specification of component hehavior. Exceptions are
primarily rescarch langnages such as OBJ [Gog81] and RESOLVE [SW04]. A more
common approach for construeting hehavioral interface specifications (abstract com-
ponents)is to integrate the use of independent specification and implementation lan-
guaces 'SWOL DLIG. Jon90. LvHKBOST]. In practice. however. the most conumon
approaches for encoding the hehavior specified by an interface relv on informal. non-
rigorous descriptions of component hehavior. Unfortunately. informal specifications
are usnally imprecise and ambiguous. Therefore, reasoning about the bhehavior of a
conerete component which someone claims implements such a specification mav he
faulty.

96

Module 1
Specification
T implements

- “Module 1.

Figure 4.1: A One-To-One Implementation-To-Specification Relationship

4.3.3 One-to-One Relationships

One of the first programming languages designed specifically to support modular
(component-based) software development was Modula-2 [Wir82]. In Modula-2, soft-
ware components are encoded as modules which may be divided into two parts: a
definition module and an implementation module. A definition module contains sig-
natures of types and operations. An implementation module contains data structures
and operation implementations. A definition module may be used to represent an ab-
stract instance and an implementation module may be used to represent a concrete
instance. The Modula-2 compiler checks to ensure that an implementation module
structurally conforms to a definition module of the same name. Thus, in Modula-
2 there is a one-to-one, by-name conformance relationship between implementation
and specification modules. This relationship naturally serves to represent the imple-
ments relationship when other means are used to enforce behavioral conformance
between the implementation and definition pair.

In Ada, a software component is typically encoded as a package. An Ada package
has two parts: a package specification and a package body. These serve the same roles
as Modula-2’s definition and implementation modules, respectively. As with modules
in Modula-2, there is a one-to-one, by-name conformance relationship between a pack-
age specification and a package implementation. Unlike Modula-2 modules, however,
Ada packages may be generic (parameterized). Generic package specifications and
package bodies may be used to encode template components. Figure 4.1 depicts the
one-to-one implements relationship between a specification component, such as a
Module-2 definition module or an Ada package specification, and an implementation
component, such as a Modula-2 implementation module or an Ada package body. As
depicted by the thick arrow, this is also a uses relationship since the implementation
components have .visibility over and depend upon (for compilation) their correspond-
ing specification components.

97

The implementation-to-specification relationships encoded using Modula-2 mod-
ules and Ada packages help reduce the conpling between implementation components.
For example if implementation component (' needs specification component 4. then
C"may refer 1o 4 and be compiled without the corresponding implementation of A
present. Further more. the conerete component that implements A mav be modified
and recompiled withont requiring recompilation of client components which use 4.
However if A1 is a Modula-2 definition module or an Ada package specification. a com-
ponent library containing A4 may only have a single implementation component that
encodes the implements relationship with 4*'. Thus. these language mechanisms.
modules and packages. lack support for maltiple implementations of a single specifica-
tion. Furthermore. Modula-2 modules and Ada packages (prior to the 1995 language
revision) are not easily extendable. The suceessors to Modula-2. Oberon [RW02] and
Modula-3 "HarS2 . and the 1995 revision to Ada [Int95h] all include mechanisms that
support multiple implementations and component extension.

4.3.4 DMany-to-One Relationships

In Section LT we disenssed inheritance and classes. and stated that specification
inheritance is nseful for encoding the implements and extends relationships. One
of the many uses of inheritance is the expression and enforcement of a conformance
relationship between two data types. When a component specifies or implements a
single data type. as does a class inheritance may be used to express a conformance
relationship between two components. For example, if elass D is derived from (inherits
from) class B.then class 1) is a subelass of I3 and. in most cases. exports all operations.
variables. exceptions. ete. exported by B, Thus. class DD structurallv conforms to
class 37

With specification inheritance. the base class. from which conforming subelasses
are derived. does not provide any implementation detail. This is analogous to a
Modula-2 definition module and (the public part of) an Ada package specification.
In OOPL terms. a class which does not provide a type representation and implemen-
tations for all its operations is called an abstract class or an abstract base class, Nost
OOPLs have mechanisms for encoding abstract classes or their equivalent. In C++
a class with at least one pure virtual function is an abstract class. In Ada. a package
exporting an abstract type corresponds to an abstract class. In Eiffel. an abstract
class is called a deforred class.

“"Varions tools and tricks may he nsed to circumvent the languace limitation of one package body
per packace specification within an Ada component library. However, within a single executable
svetem. there may only be one package body per package specification.

““Some OOPLs allow a derived class D to “hide™ inherited operations of base elass B, If this
technigne is nsed. then D will not conform to 1.

0s

Abstract
Base Class 1

implements

Concrete Derived - Concrete Derived
Class1A™ " - . Class 1B

Figure 4.2: A Many-To-One Implementation-To-Specification Relationship

An abstract class that provides no implementation detail is useful for encoding
an abstract component that exports a single type. A concrete class, a class that fully
implements its data representations and operations, is useful for encoding a concrete
component that exports a single type. The structural aspects of the implements
relationship may be encoded using specification inheritance by deriving a concrete
class from an abstract class.

Figure 4.2 depicts two (claimed) implements relationships among two concrete
classes and an abstract class. Each concrete class is derived from the abstract class
shown at the top of the figure. Although a language’s inheritance mechanism may
be used to encode this type derivation, the concrete components need not “inherit”
anything from the abstract class. Each concrete class must override all abstract op-
erations specified by the abstract class with structurally conforming and fully imple-
mented operations. Additionally, each concrete class must provide a data structure to
represent the exported type of the concrete class. Note that when specification inheri-
tance is used to encode the implements relationship, the implementation component
uses the specification component that it claims to implement. This is indicated by
the thick arrows in Figure 4.2.

In contrast to the one-to-one implementation-to-specification relationship depicted
in Figure 4.1, inheritance supports encoding many-to-one implements relationships.
Any number of concrete classes may be derived from and implement a single ab-

- stract class. Using this approach, a component library, and even a single executable

program, may include different concrete components, each of which explicitly imple-
ments a single abstract component. Thus this use of inheritance supports (better
than the mechanisms of Modula-2 and-Ada83) encoding the implements relation-
ship and component-level maintenance. The RA95 discipline (discussed in Chapter 5)
and RESOLVE/C++ discipline both use specification inheritance for encoding the
implements relationship.

In Section 4.1.4 we pointed out that some newer languages use different mech-
anisms for specification inheritance and implementation inheritance. Currently, the

99

most popular of these langnages is Java. In addition to classes which mav he ab-
stract or concrete. Java includes interfoces which are similar to abstract classes. Un-
like Java's abstract classes, however, interfaces mayv only include abstract operations
(called abstract methods in Java) and constants. Java interfaces define structural
component interfaces and serve as a basis for specification inheritance.

Java's kevword implements is used for specification inheritance onlv while the
kevword extends may be used for specification or implementation inheritance?, In
a Java class or interface. the extends clause encodes the traditional form of inheri-
tance found in many OOPL’s. However. a class mayv only “extend” one other class.
This Timits Java's implementation inheritance to single inheritance. On the other
hand. a Java class may “implement™ one or more interfaces and a Java interface mav
“extend” one or more interfaces. Thus Java's specification inheritance. encoded by
an extends clause in an interface or an implements clause in a class. supports mul-
tiple inhicrifanee. Nultiple inheritance. which often leads to problems when used for
implementation inheritance. does not canse the same problems when used for specifi-
cation inheritance. Java's use of distinet langnage mechanisms to support these two
different. and sometimes conflicting. uses of inheritance is an improvement over the
more traditional approach of using one inheritance mechanism for both purposes.

In Java. an abstract instance exporting a single tvpe mav be encoded by an inter-
face. A conerete instance exporting a single tvpe mayv he encoded by a conerete ¢lass
(a class with no abstract methods). Using this strategv, the structural aspects of the
implements relationship may be encoded conveniently with an implements clause
in a conerete class that names an interface. which the conerete class implements.
Figure L3 shows the Java interface AT_Flipflop followed by the Java conerete class
CI.Flipflop.3. These are the Java encodings of the abstract instance shown in Fig-
nre 3.1 and the conerete instance shown in Figure 3.5. Note that the parameter to
Toggle and Test (of the exported tvpe) is implicit in Figure 4.3 since Java uses the
traditional object-oriented notation for method declarations and invocations.

Despite Java's support for conveniently encoding the structural aspects of the
implements relationship. as shown in Figure (1.3, Java lacks support for encodine
a more general implements relationship. A Java class only can define a single
extendable type. Thus, a Java class cannot define two related tvpes. such as Point
and Line. both of which may be extended using inheritance. This limitation is
common to the object-oriented paradigm. which uses a single mechanism. tvpically a
class. to define both components and programmer-defined ADT's. Mechanisms such
ax Java poclages and C++ friend functions provide inclegant means for working
around this limitation in most sitnations.

Java's lack of support for parameterized classes. templates, presents a more se-
rious limitation. Various idioms exist for “simulating™ templates in Java [OWOT].

Wi coined the terms “implements™ and “extends™ before looking at Java. Their use by Java
reinforces onr belief that these are natural terms for conveving the intended relationships.

100

// AI_Flipflop.java

public interface AI_Flipflop ({
// modeled by BOOLEAN
// exemplar ff
// initially ff = FALSE

public void Toggle ();
// ensures ff = NOT #ff

public boolean Test ();
// ensures Test = ff

// CI_Flipflop 3.java

public class CI_Flipflop_3
implements AI_Flipflop {

private int state = 0;
// convention 0 <= state <= 255
// exemplar ff_ rep
// correspondence ff = ((ff_rep.state MOD 2) = 1)

public void Toggle () {
state = (state + 1) % 256;
}

) o

public boolean Test (
% 2)

return ((state = 1);

}

Figure 4.3: Java Encoding of CI_Flipflop_3 implements AI Flipflop

However, using such strategies to encode a template-to-template implements rela-
tionship leads to extremely awkward and often inefficient code. Some researchers
have proposed the addition of templates to Java [BLM96, OW97].

4.3.5 Many-to-Many Relationships

As we noted in Section 2.3.1, the imps relation is a many-to-many relation. There-
fore, the implements relationship is a many-to-many relationship in the following
sense. Many different concrete components may implement a single abstract com-

~ponent; and a single concrete component may implement many different abstract

components. The first case, multiple implementations of a single specification, is a

101

Specification Specification
Module 1 Module 2

implements
Implementation Implementation
Module A Module B

Figure L1 Many-To-Many Implementation-To-Specification Relationships

common situation and essential for component-level maintenance of component based
svstems (both software and hardware systems). The inheritance-based approach dis-
cussech in Section .34 supports multiple implementations of a single specification.
The second case. multiple specifications of a single implementation. arises implicitly
from specification extension (recall Equation 2.1) and also may be useful to provide
distinet interfaces or “views” of a single implementation.

It is possible to explicitly encode implements relationships among a single con-
crete component and more than one abstract component. For example. in program-
ming languages that support multiple inheritance. a concerete class mayv inherit from
multiple abstract classes. In Java. a conerete class may include an implements clanse
that names more than one interface. In this situation. structurally identical methods
may (hut need not) be defined in and “inherited™ from more than one interface. Fig-
ure 44 depicts a simple many-to-many implementation-to-specification scenario. In
this example. the concrete component encoded as implementation module 4 imple-
ments and uses both abstract components. specification modules 1 and 2. Imple-
mentation module 4 must conform to hoth specification modules and mayv be used
where implementations of either or both specifications are required. As in Figure 1.2,
the uses relationship between implementation and specification comes from employ-
ing an inheritance mechanis to encode the implements relationship.

Encoding an implements claim with any mechanism that couples an implemen-
tation to a specification has some disadvantages. Inheritance is the primary example
of such a mechanism. For example. to encode a new implements relationship for
an existing conerete component. perhaps one in object code form in the component
library. requires a sonrce code change and recompilation of the conerete component.
Baumaartner and Russo present an example of how this problem might arise in prac-
tice in the context of OOP [BRO7. § 2.1]. The solution they propose and implement
for C=+"BRO7 and. with Linfer. for Java [LBRO6] centers avound structural confor-
manece of components. With structural conformance. a class does not have to name

102

the interface®® to which it conforms as is required with inheritance. At component
integration time, the compiler determines whether a class conforms to an interface
by comparing its structure (public names and signatures) to the structure of the sig-
nature. A similar structural comparison is performed by ML in determining whether
an ML structure (an implementation component) conforms to an ML signature (a
structural specification component)..

With the structural conformance approach, an implementation component does
not need to be coupled to a specification component that it implements in order for an
instance of client code that needs the specification component to use the implemen-
tation component. Therefore, an existing implementation component does not need
to be modified in order for it to fulfill new, and possibly unforeseen, requirements.
Furthermore, this strategy clearly supports many-to-many implements relationships
among concrete and abstract compdnents.

As with the other approaches discussed in this chapter, language mechanisms
supporting structural conformance do not address behavioral conformance between
components. Furthermore, structural conformance does not require any language
mechanisms to explicitly record the implements relationship as does inheritance.
As a result, it is possible for two components to “accidentally” conform structurally
but not conform behaviorally. Laufer et. al., propose the use of properties to ad-
dress the problem of accidental conformance [LBR96, p. 6]. Properties are dummy
methods with “well known names” that encode semantic information. For example,
the property “LIFO” might be included in abstract and concrete classes for stack
components.

A more powerful and flexible solution to this problem is to use independent map-
pings between components, which describe how the behavior of one component con-
forms to that of another component. As we discussed in Section 3.3, recording the
correspondence (abstraction relation) between two components documents how the
behavior described by one component may be understood and justified as conform-
ing to the behavior described by another component. In the examples in Chapter 3
(Figures 3.5, 3.7, 3.8, 3.11, 3.18, and 3.27) the correspondence is recorded in con-
crete components and implicitly associated with the abstract component named in
the implements clause. Furthermore, in each case there is an implicit mapping of
each element of the abstract component to its corresponding implementation element
in the concrete component. This approach couples a concrete component to the ab-
stract component(s) that it implements and fixes the set of abstract components
that may be used as client-level descriptions of the implementation. It also fixes the
way in which the concrete component is interpreted as conforming to an abstract
component. To add new relationships or modify existing ones requires modifying the

241n their proposal for C++, Baumgartner and Russo introduce a language construct called a
signature, to which classes may conform structurally without inheritance. In their proposal for Java,
Java interfaces serve this purpose.

103

Specification Specification
Module 1 Module 2

Implementation Implementation
Module A Module B

Ficure L5 Independent Mappings Between Specifications and Implementations

conerete component even thongh the operational hehavior the component implements
does not chanee.

An alternative approach is to record conformance relationships. such as imple-
ments and extends. in a separate module. This approach is used by the funcetional
lanenage OB 'GogS6T and is modeled by interpretation mappings in the ACTI model
of software snbsvstems [Edw05. £1.10]. In OBJ. a module ¢an be either an object or
a theory. An OBI object defines types (called sorts in OBJ) and associated op-
erations. . An OBI theory provides an abstract. axiomatic deseription of behavior.
Thus. OB objects and theories correspond to conerete and abstract components.
respectively. An OB vicw deseribes how a module. either an object or a theory.
conforms semantically to a theory. Thus. a view mav be used to describe how an
object implements a theory or how a theory extends another theory, In ACTI.
an nterpretation mapping playvs a similar role. An interpretation mapping defines a
correspondence hetween two abstract instances. explaining how one abstract instance
can be interpreted as satisfving the behavior deseribed by the other.

Ficure 1.5 shows how two abstract components. Specification Module 1 and 2.
could be related to 1wo conerete components. Implementation Module A and B. with
forr independent “mapping units™. In this example. each of the four mapping units
conld deseribe a different implements relationship between the two components to
which it refers. As the arrows in Figure 4.5 imply. the mapping units refer to (depend
on the specification and implementation modules. but not the other wav around.
Thus an implementation need not refer to a specification that it implements and
vice versa. This strategy allows new explicit conformance relationships to be added to
a component Iibrary withont modifving existing components which may be involved
in the new relationships,

101

Figure 4.5 shows two different mapping units, Mapping y and Mapping z, relat-
ing Implementation Module B and Specification Module 2. This is possible be-
cause a mapping unit can rename various elements in describing how once component
conforms to another. Both OBJ views and ACTI interpretation mappings support
renaming. As a more concrete example, assume that Specification Module 2 in
Figure 4.5 describes a stack abstraction such as AT_Stack shown in Figure 3.10 on
page 57. Now assume that Implementation Module B describes an implementation
of a deque, a double-ended queue, including the deque operations: Enqueue_At_Front,
Enqueue_At_Rear, Dequeue_At_Front, and Dequeue_At_Rear. Mapping y could map
Enqueue_At_Front and Dequeue_At_Front to the stack’s Push and Pop operations,
respectively. Describing a different way to implement a stack, Mapping z could map
Enqueue_At_Rear and Dequeue_At_Rear to Push and Pop, respectively. To complete
the picture, Implementation Module A might be at typical stack implementation
with only operations Push and Pop. In this case Mapping x would describe the obvious
mapping with no renaming. Specification Module 1 might describe the behavior
of a bag (multiset) container with operations Insert and Remove. Then Mapping w
would map Push and Pop to Insert and Remove respectively.

The independent mapping approach provides significant flexibility. However, it
adds complexity. The implements relationship is no longer a simple binary relation-

" ship as modeled by imps in Section 2.3.1. Also, when a mapping unit is allowed to

rename types and operations, it plays an important operational role at component
integration time. In addition to selecting an implementation component to instanti-
ate a template, the system developer may also need to select an associated mapping
unit to identify the appropriate operation-to-operation bindings. OBJ uses default
views (default mappings) to simplify component composition [Gog86, p. 21].

4.4 Encoding The extends Relationships

In Section 3.5 we defined the extends relationship which is based on the exts
relation defined in Section 4.1.4. Documenting the extends relationship records the
claim that any implementation of one specification will also be an implementation of
another specification. Thus if abstract component A, extends abstract component
A;, then all implementations of A, will also be implementations of 4;. Thus A, must
specify all the behavior specified by A; and usually will describe additional functional
behavior not specified by A;. The motivation for establishing and clearly document-
ing the extends relationship is to foster the development of new components with
enhanced capabilities, but which remain compatible with existing systems and their
requirements. ‘

In many respects, the extends relationship is similar to the implements rela-
tionship. Both are many-to-many behavioral conformance relationships. Many of the
issues discussed in Section 4.3 pertaining to encoding the implements relationship

105

also apply to encoding the extends relationship. For example. while extends is not
a dependeney relationship. like implements. it is casiest to encode as such. Like
implements. extends is defined as a manv-to-many relationship. However. most
laneuace mechanisms useful for encoding extends are the same as those used for
encoding implements and only support many-to-one extends relationships. We do
not address these issues in detail in this section since they were disenssed at length
in Section 4.3.

The most common way to encode the extends relationship in modern program-
mine lancuages is to use an inheritance or inheritance-like language mechanism. In
Section 3.5.1 we disenssed the differences hetween the meaning of extends and the of-
fect typically achieved by using inheritance. The extends relationship holds hetween
two specifications when one conforms to another. Neither of the two specifications
need mention the other (as with AILFFExt in Figure 3.15 which extends AI_Flipflop
in Fignre 3.1, Use of inheritance always implies a uses relationship. If abstract class
Az inherits from abstract class Ay (type Ay is derived from type 4,) then 4, uses
A As diseussed in Seetion 3510 there are advantages and disadvantaces to using a
conpling relationship to encode the extends relationship.

Several newer OOPLs such a Java provide distinet language mechanisms for
adding additional elements to abstract “interface-onlv™ components and for adding
additional elements to implementation components. For example, Java's extends
kevword. when used to relate two Java interface components. provides a form of
specification inheritance. Figure 1.6 shows an example of this use of Java extends.
The interface AT_Flipflop With_Set shown in the bottom of this figure extends
AI_Flipflop shown in the top of the figure. The operations Toggle and Test are
inherited from AI_Flipflop by AI Flipflop_With Set.

Java's extends mechanism is convenient for encoding the extends relationship
between abstract instances as shown in Figure 4.6, However. since Java does not
support templates. only the abstract instance to abstract instance form of extends
(defined on page 61) mayv be encoded in Java. Furthermore. when the extends kev-
word is used to relate two Java classes, it provides implementation inheritance rather
than specification inheritance. While the common meaning of the term “extends™ ap-
plies to both situations. we prefer to classifv the use of extends between two classes
as a specific application of the uses relationship. While implementation inheritance
i~ useful for coding conpled implementations of extension components as discussed
in Section 3.5.20 1t is also commonly used in situations where there is no intended
behavioral conformance between the components.

106

// AI_Flipflop.java

public interface AI_Flipflop {
// modeled by BOOLEAN
// exemplar ff
// initially ff = FALSE

public void Toggle ();
// énsures ff = NOT #ff

public boolean Test ();
// ensures Test = ff

// AI_Flipflop_With_Set.java

public interface AI_Flipflop_With_Set
extends AI_Flipflop {

public void Set ();
// ensures ff = TRUE

Figure 4.6: Java Encoding of AI_Flipflop_-With_Set extends Al _Flipflop

- Unlike Java, most OOPL’s use the same inheritance notation for at least three
conceptually distinct purposes: implementation to specification conformance, speci-
fication to specification conformance, and implementation to implementation confor-
mance. Here we are assuming that abstract classes are used as specification compo-
nents. In Chapter 5 we discuss how RA95 uses Ada’s single inheritance mechanism
for each of these three purposes.

In addition to inheritance, Ada also provides another mechanism which supports
extension of components (packages). Ada’s hierarchical library units allow a “child
unit” package to extend an existing “parent unit” package without requiring any
alterations to the parent unit or to systems which use the parent unit. (We discuss this
mechanism in detail in Chapter 5.) While inheritance is a mechanism for extending a
type, a child unit extends an Ada package which may include definitions of more than
one type. Thus, the hierarchical library unit mechanism offers some advantages over
inheritance and is indeed quite useful. However, this mechanism does not support
substitutability of components as does inheritance. This is because there is no way
to encode the needs relationship based on hierarchical library units. That is, there
is no way in Ada to encode the requirement that any child unit of a parent unit
may be supplied as an actual parameter to a concrete template (a generic package)

107

when the formal parameter is restricted to be an instance of the parent unit. Thus.
the hierarchical Tlibrary unit mechanism alone is not appropriate for encoding the
implements relationship in a way that supports component-level maintenance.

4.5 Encoding The needs Relationship

In Section 3.0 we defined the needs relationship which is based on the needs
relation defined in Section 2.4.2. The needs relationship expresses a deferred depen-
deney on an implementation component. In this section we brieflv discuss how the
needs relationship may be encoded with programming languages.

I programming language terms. using the needs relationship is a way of express-
ine polvmorphism. As disenssed in Seetion -1.1.3. the two primary approaches to polyv-
morphism supported by programming languages are parametric polymorphism and
subtype (inchision) polvmorphism. Languages support parametric polvmorphism.
parameterized components. throngh mechanisms such as generie packages in Ada.
generie classes in Eiffel. templates in C4+4. and functors in ML, Subtvpe polvimor-
phism is supported by inheritance.

The needs relationship is a form of what many authors call bounded polymor-
plisn "CWSSIf conerete template ¢ needs abstract instance A, then the set of
acceptable actual parameters for € is bounded by 1. 4 identifies the set of con-
crete instances that may be used to instantiate €. As several authors have pointed
ont. bhounded polymorphism is difficult to express using subtype polymorphism alone
OWATLDGMOS Although it is possible to encode the needs relationship using
only subtvpe polymorphism. encoding hounded polvmorphism without parametric
polvmorphism tends to lead to very awkward code. Furthermore. relving on inheri-
tance to achieving bonnded polvimorphism (as currently must be done in Java) can
lead to code bloat and performance penalties for run-time tvpe casting and run-time
tyvpe checking [BLNOG . Therefore. our clear preference is to use parametric poly-
morphism. perhaps in conjunction with subtype polvmorphism. to encode the needs
relationship.

Section 5.5 deseribes how the needs relationship is encoded in RESOLVE/Ada95
usine parametric polvmorphism (Ada generies) and subtype polvimorphism (Ada type
extension). A similar approach based on C44 templates is used by RESOIVE/C++
MWeid?T . With both Ada and C++4. encoding the needs relationship is not a trivial
matter. Instead of a single Janguage mechanism to express this relationship. such as
facilitv parameters in RESOILVE [SWW9 11} several language mechanisms must be used
in conjunction with each other to achieve the approximate effect. We believe that
this points ont a significant weakness in current programming languages intended for
use in component-based software engineering.

108

4.6 Chapter Summary

In this chapter we examined how the mechanisms of modern programming lan-
guages can be used to encode the component relationships defined in Chapter 3. While
the importance of modularity, information hiding, polymorphism, and extendibility
has been understood for at least 25 years, the evolution of programming languages
has been slow. Only recently has the importance of parametric polymorphism been
recognized outside of the academic community and been integrated into widely used
languages such as C++. Nevertheless, the most widely used new language, Java,
currently does not support parametric polymorphism. Furthermore, most language
implementations that do support parametric polymorphism generate independent
code for each template instantiation which often leads to code bloat. As we discussed
in Section 4.5, parametric polymorphism is very useful for encoding the needs rela-
tionship.

On balance, the emergence of OOP as a programming paradigm has led to better
language support for developing component-based software. Most OOPL’s provide
good facilities for data abstraction and modularity. Interface-only components, such
as abstract classes, are useful for defining structural specification components which
may be augmented with behavioral specifications to encode abstract components.
While there has been a tendency to use inheritance for many disparate purposes,
when used in a disciplined manner, inheritance is a useful tool for encoding relation-
ships such as implements and extends. Several newer languages, such as Java and
Theta, provide distinct mechanisms for expressing specification conformance and im-
plementation inheritance. In the case of Java, use of the keywords implements and
extends for these mechanisms makes encoded relationships easier to identify and
understand.

A weakness of most OOPL’s is the use of a single mechanism, the class, for both
modularization and new type definition. This strategy makes it difficult to define
more than one extendable type within a single component. OOPL’s typically require
breaking encapsulation when one type needs access to another type’s representation.
Thus, with OOPL’s, encoding the extends relationship is generally limited to exten-
sion of user-defined types.

In order to fully support expression of behavioral relationships between software
components, implementation and specification notations need to be better integrated
into a single language. While several research languages have taken this approach, to
date, such languages have received little attention outside of academia.

110

CHAPTER 5

BEHAVIORAL RELATIONSHIPS IN RESOLVE/ADA95

In this chapter we demonstrate how the behavioral relationships described in
Chapter 3 may be expressed using RESOLVE/Ada95. We begin with an introduc-
tion to RESOLVE/Ada95. Then we examine how the language features of Ada are
used to express abstract, concrete, and template components, and the behavioral
relationships between them. We continue to use the component coupling diagram
notation introduced in Chapter 3, to express design time relationships. We also in-
troduce a new component instantiation diagram notation that depicts integration
time relationships, i.e., how the components of a particular system have been com-
posed. The chapter concludes with a discussion of the limitations of Ada with respect
to its support for expression of behavioral component relationships.

5.1 RESOLVE/Ada95

RESOLVE/Ada95 (RA95) is a discipline for software component engineering that
combines the Ada programming language with the specification notation and design
discipline of RESOLVE [SW94, WOZ91, Har90]. RESOLVE is three things. First,
it is a detailed framework for software component engineering. RESOLVE is also a
language which includes two integrated sub-languages: a model-based formal spec-
ification language and an imperative, sequential, programming language. Finally,
RESOLVE is a discipline with detailed design principles which guide software engi-
neers in the development of high quality software components and systems. :

RA95 is a major revision to the RESOLVE/Ada (RA83) discipline described by
Hollingsworth [Hol92] and based on the original 1983 Ada language definition [Dep83].
Both RA83 and RA95 apply the component design principles and formal specification
notation of RESOLVE to software components implemented in Ada. Unlike RAS83,
however, RA95 explicitly encodes the behavioral relationships between components
using new language mechanisms. RA95 also makes explicit the ACTI view of compo-
nents as abstract and concrete templates and instances [Edw95, §3.3]. Furthermore,
use of new language mechanisms makes most RA95 components much simpler to
encode than similar RA83 components.

111

Ada’s strone support for modularity and genericity have long made it a good pro-
gramming language for implementing parameterized components. The 1995 revision
to Ada added substantial new support for object-oriented programming (OOP). a new
model of module extension. and more powerful generic parameterization mechanisms.
RA9S relies heavily on many of the new Ada langnage mechanisms. In some aspects,
RADS is similar to the RESOLVE/C4+4 (RCPP) discipline developed concurrently
by Edwards. Weide, and Zhupanov [Weid7]. For example. both RA95 and RCPP rely
heavily on inheritance mechanisms to support expression of hehavioral relationships.
There are many differences. however, between RA95 and RCPP due to differences
between Ada and C++ and differences in the basic approach taken.

The ROPP discipline relies heavily on the use of preprocessor macros that serve
to make the “source™ langnage of RCPP appear substantiallv different from that of
tvpical C+=. The benefits of this approach include making the RESOINVE and ACT]I
perspeetives more explicit. hiding ammoving C++ syntax. and improving maintain-
ability by reducing source redundaney. The approach to RA95 does not require the
nse of a preprocessor. Implementing components using the RA95 discipline entails
coding direetly in Ada. One benefit of this approach is that RA9S uses language
mechanisms of Ada largely as they were intended to be used. Therefore explaining
the rationale for RA9SS use of various language mechanisms is easier. Another ben-
efit is that maintenance of RA95 code is maintenance of Ada code. Thus. analvsis
and maintenance tools available for Ada should he directly applicable to components
developed using the RA9S discipline. Finally. a possible practical benefit of this ap-
proach is that RAS mayv be more accessible to experienced Ada programimers than
RCPP is to experienced C4-4 programmers.

Despite their tremendons complexity, neither Ada nor C4++ provides an ideal
set for subser) of Tanenace mechanisms for supporting software component engineer-
ing. The RESOLVE language. which was designed specifically to support software
component engineering. can express notions which are cither impossible or extremely
awkward 1o express in Ada or C++. However, one clear advantage Ada and C++
have over RESOLVE is the availability of commercially supported compilers on a wide
variety of platforms. Thus, RA9S and RCPP make it easier for software engineers to
apply the RESOLVE discipline in the implementation of software components.

The remaining seetions of this chapter disenss many, but not all. aspects of RA9S.
We foens on the expression of hehavioral relationships between RA03 components, In
doing so. we deseribe nearly all aspects of RA95 that distinguish it from RAS83. We
also point out that the RA9S discipline presented in subsequent sections is only one of
many possible strategies for applving the RESOINE discipline to Ada. This version
of RADS attempts to explicitly express as many aspects of the RESOILVE framework
as possible. Due to the current immaturity of Ada compilers supporting the 1995
lanenace definition. we have not been able to assess the practicality of this particular
approaclion large svstems (althongh all components shown in this Chapter do compile

112

on the current GNAT compiler). As Ada compilers become more robust, the RA95
discipline may be revised to ensure it provides a viable approach for building large
systems with available Ada compilers.

5.2 RESOLVE/Ada95 Abstract Components

In RA95, abstract components are either abstract kernel components or extensions
to other abstract components. This section describes abstract kernel components and,
in doing so, most aspects of RA95 abstract components. Section 5.6 describes abstract
components that extend other abstract components.

An abstract kernel component is a specification that typically has no dependen-
cies on other specific components. We could use, for example, an abstract kernel
component to specify the behavior of a component that provides a queue of integers.
In RA95, this specification would be based on a mathematical model of a queue of
integers such as a string of integers. Here the phrase “string of integers” refers to
the mathematical concept of string defined by string theory and the mathematical
notion of integer. The signature of a queue of integers would be characterized by a
type name, such as Integer_Queue, and the signatures of primary operations on that
type such as Enqueue and Dequeue. The functional behavior of the integer queue
operations would be described in terms of the queue’s mathematical model. For ex-
ample, the behavior of an initialization operation could be described as returning an
empty string of integers. The behavior of an Enqueue operation could be described
as ensuring that the integer to be enqueued is placed at the right end of the string
of integers modeling the queue. While a specification such as this does depend on
mathematical string theory and the built-in Integer type, it does not depend on any
other software components. . ‘

An abstract kernel component specifying a queue of integers would be an abstract
instance. A more useful specification would be an abstract template describing the
behavior of a generic queue. Such an abstract template would be parameterized by
the type of item to be contained in instances of the template. An abstract instance
of a queue abstract template might depend on another specific component providing
the item type. The queue abstract template itself, however, need not depend on any
other specific component. In order to support greater reusability, most RA95 abstract
kernel components are abstract templates as opposed to abstract instances.

One of the aspects of the RESOLVE framework that most distinguishes it from
other disciplines is its use of the swapping paradigm. RESOLVE uses swapping
instead of assignment as the primary method for data movement. The use of swap-
ping provides profound benefits and is one of the cornerstones of the RESOLVE
framework|[HW91]. The Swap operation simply exchanges the values (both the ab-
stract and concrete values) of its two operands. Swap provides the efficiency of assign-
ment implemented by copying a pointer (shallow copying) while maintaining value

113

semanties like assienment implemented by copyving a value (deep copving). Using
swapping avoids the aliasing problems which result from shallow copyving and which
sienificantly complicate formal justification of the implements relationship between
nmnplementations and specifications. Aun important insicht on which the RESOIVE
framework capitalizes is that deep copyving is rarely needed when components are de-
stened to use swapping. RAOSS support for swapping as the primary data movement
operation has significant implications that affect the wav in which Ada is used to
encode RAOS abstract kernel components.

An RA9S abstract kernel component is encoded as an Ada package. usnally
generic. which exports an abstract type and abstract primitive operations of the tvpe.
The exported abstract type is declared as an abstract tagged Limited private type.
In Ada abstract types ave fagged types from which no objects (variables) mayv be de-
clared. Ada tageed types are types from which new user-defined types mav be derived
using fypecrtension. a form of inheritance. Primitive operations of a tageed type are
those operations declared in the same package as the tageed type and having at least
one parameter of the tageed tvpe. In Ada. only primitive operations are inherited
by new tvpes derived from another tagged tvpe. (In OOP terminology. the exported
taceed typeis a closs and the primitive operations ave its member funetions.)

The tvpe exported by a kernel abstract component is limited private which means
that assienment and equality operations are not automatically defined for objects of
the type. Sinee RAOS uses swap instead of assignment as the primary data move-
ment operation. a primitive assignment operation is unnecessary. In situations where
the deep copying functionality of assienment is needed. it mav be added with an
extension component as described in Section 5.6. While it would be technically pos-
sible to support decep copy assignment in all kernel components. the antomatically
defined equality is an Ada funetion and is not compatible with RA95 as explained
helow. Thus, RAS uses Ada’s limited private types to prevent antomatically defined
asstenment and equality,

Anunfortunate requirement of Ada functions is that their parameters must he =in”
modeThe intent of this requirement is to ensure that a function implementation does
not chance the values of the actnal parameters used in a function call. The problem
with this requirement is that it is both overly restrictive and largely ineffective in
achievine its intended purpose. For example. consider an operation to determine if
two quenes are equivalent, Le.o whether they represent the same abstract value, An
implementation of this operation should be permitted to remove and compare items
from each quene as long as it returns the guenes back to their original abstract values
before completing exeention. Ada. however. does not allow an “in”™ mode formal
parameter to be passed as an actual parameter to another operation where an “in out”
mode parameter is required. Therefore. operations of the encapsulated representation
tvpe cannot be nsed to disassemble the quenes in order to compare individual quene
ems. A method of cirevmventing this imitation wounld be to represent a component s

114

data structure as a pointer (an Ada access type) to an unencapsulated data structure.
This is clearly unacceptable as a general solution since it precludes constructing data
representations from other encapsulated types. Thus, in general, RA95 prohibits the
use of Ada functions since they preclude implementations that need to directly or
indirectlv alter formal parameter values®.

In the special case of the equality function, a more extreme general solution is
possible. We could require that all types support equality and thus make it possible to
provide encapsulation with non-limited private types. Then an implementation of an
equality operation could call the equality operation(s) of its constituent representation
type(s). This approach is unacceptable from the RESOLVE perspective since for all
but simple types equality testing tends to be very expensive and is often unnecessary
(and theoretically uncomputable for some types). Therefore, RA95 kernel components
only define an equality operation (with an Ada procedure) on types for which equality
is an essential operation. Like copying operations, RA95 equality testing operations
may be provided as extensions.

The RESOLVE counterpart to an “in” mode parameter is a preserves mode pa-
rameter. An operation is permitted to change the representation value of a preserves
mode parameter as long as there is no net change in the abstract value of the parame-
ter. In addition to preserves mode, RESOLVE parameter modes include alters mode,
produces mode, and consumes mode. An operation may change the abstract value of
an alters mode parameter. The initial abstract value of a produces mode parameter
is irrelevant to an operation’s effect. The initial value of a consumes mode parameter
generally is relevant to an operation’s effect and its final returned value must be an
initial value of its type. In RA95, operations are encoded as procedures. All parame-
ters, regardless of the RESOLVE mode, use Ada’s “in out” mode except for preserves
mode parameters of built-in scalar types. In this situation “in” mode is used in order
to allow scalar literal values as actual parameters. Formal comments identify the
RESOLVE mode of each procedure parameter in RA95. While RESOLVE’s parame-
ter modes convey design intent, their primary purpose is to simplify specification of
operation preconditions and postconditions.

All RESOLVE components that define types provide the three standard opera-
tions: Initialize, Finalize, and Swap. Initialize sets the abstract value of an
object to an initial value of its type. RESOLVE guarantees that all objects are au-
tomatically initialized when they come into existence. Finalize is typically used
to reclaim system resources allocated to an object. RESOLVE guarantees that all
objects are automatically finalized immediately before they cease to exist. The func-
tional behavior -of Finalize usually does not need to be specified. Swap exchanges
the abstract values of two objects as described above. '

2RESOLVE/C++ does not suffer from this annoyance since C++ function parameters may be
modified.

115

RADY wses Ada’s controlled types 1o achiove automatic initialization and final-
ization of all objects except built-in scalars. A controlled tyvpe is a tageed type
derived from either Controlled or Limited Controlled. two types defined in the
built-in package Ada.Finalization. Limited Controlled has two primitive op-
erations: Initialize and Finalize. These operations have mill-hody implemen-
tations which may be overridden as necessary for descendent types derived from
Limited.Controlled. While the exact details are quite involved. Ada basically as-
sures that an Initialize operation is automaticallv called when an object of a con-
trolled type comes into existence. Similarly, Ada assures that a Finalize operation
is antomatically called immediately hefore a controlled type object ceases to exist.

Abstract kernel components derive their exported tvpe from Limited Controlled
witha null record crtension in the private part of the package. The private derivation
assures that Initialize and Finalize cannot be called explicitly by clients. The null
record extension adds no data representation to the tvpe Limited Controlled and thus
effectively leaves the data representation of the exported tvpe unspecified. (Due to
Ada accessibility rules the derivation from Limited Controlled must take place in
the abstract kernel component and cannot be placed in a concerete component. which
would be @ more appropriate location.) In order to derive the exported tyvpe from
Lirited.Controlled, the package encoding a kernel abstract component uses the
built-in package Ada.Finalization. The with confert cluuse in the global contert
secfion of RADS components expresses this uses relationship. In RESOINE. the
global context section lists all non-parametric dependencies. We disenss the uses
relationship in RA9% in Section 5.3.

In addition to the implicit operations Initialize and Finalize inherited from
Limited Controlled. all abstract kernel components explicitly export Swap and other
abstract opcrations. An Ada abstract operation is a primitive operation that must be
overridden with an implementation for a non-abstract tvpe derived from the abstract
tyvpe. The exported abstract type and abstract operations along with formal speci-
fications embedded in structured comments provide the kernel abstract component’s
sienature and behavioral specification.

Abstract kernel components are typically abstract templates parameterized by
other components. These abstract templates are encoded in RA9S as generic pack-
ages. The abstract template parameters are inclnded in a specification parameters
sectionand are encoded as Ada generie formal parameters. Each component imported
as a specification parameter is encoded as a limited private generie formal type pa-
ramdter. Each generie formal type parameter must have an associated generie formal
subprogram parameter importing the Swap operation for that tvpe. Other generic for-
mal subprograms may be used to place constraints on imported components. Ada’s
subprogram defanlt bhox specification (<>) is used with all generie formal subpro-
grams to simphify generic package instantiation. We discuss specification parameters
further in Section 5.5.

116

The name of a kernel abstract component is the name of the abstraction being
described, prefixed with AT_ or AI_, depending on whether it is an abstract template
or an abstract instance. For example, AT_Queue is the package name of a kernel
abstract component describing a queue. The name of the exported type is usually
the name of the abstraction being described. For example, the type exported from
AT _Queue would be named Queue. In some cases, the type name may be shortened
to improve the readability of the code. Note that an abstract template only requires
a package specification and no associated package body.

Figures 5.1 and 5.2 show the RA95 code for the AT_Queue component. The only
aspect of this code not described above is the design choice of which operations should
be primary operations included in the kernel component. The choice of primary oper-
ations for AT_Queue reflects the RESOLVE design principle that a kernel component
should be as simple as possible while providing a client controllability and observabil-
ity over the component’s abstract state [WEH196]. While other queue operations will
inevitably be useful in various contexts, these secondary operations may be added as
extensions and implemented by layering on top of the primary operations provided
by the kernel component.

5.3 The RESOLVE/Ada95 uses Relationship

As we have mentioned before, Ada’s with clause is the primary mechanism for
encoding the uses relationship between two Ada packages. However, since one of the
goals of the RESOLVE discipline is to minimize fixed design dependencies, the uses
relationship is emploved quite sparingly in the design of RA95 components. In order
to minimize coupling and maximize reusability, the RESOLVE discipline suggests
that components (abstract and concrete) be fully parameterized [SW94, pp. 34,40].
That is, all dependencies which can be deferred should be deferred rather than fixed.
In terms of software component relationships, this means that, whenever possible,
components should be designed with dependencies expressed in terms of the needs
relationship rather than the uses relationship. Usually, a uses relationship between
two RA95 components either is associated with a needs, implements, or extends
relationship (as discussed in subsequent sections), or is a dependency on a component
in Ada’s predefined language environment (a built-in package).

The abstract template AT_Queue shown in Figures 5.1 and 5.2 uses two Ada built-
in packages. The with clause in the global context section explicitly documents a fixed
dependency on the package Ada.Finalization as discussed in Section 5.2. There is
also an implicit dependency on the built-in package Standard which defines all of
Ada’s pre-defined identifiers, primarily those of the built-in types and operations. In
this case, AT_Queue requires visibility to the Standard package for the definition of
the type Integer referenced in the declaration of the Get_Length procedure. All
Ada packages have implicit visibility to Standard. No “with Standard” clause is

117

type Itern is limited private;
with procedure Swap (left, right : in out Item) is <>

package »T_Qucue is

type Qucuc is abstract tagged limited private:

~=! type Queuc 1s modeled by string of Item

--1! ecxernplar g
--! Initialization ensurcs
--1! G = cmpty_string

procedure Engucuc (
¢ : in out Qucuc; ~--! alters g

» : in out Item --! consumes x
) is abstract:

Figure 5.1: Package Specification for AT_Quene

procedure Dequeue (
g : in out Queue; --! alters g
X : in out Item --! produces x
) is abstract;

--! requires

-=1 g /= empty_string
--! ensures

--1 #g = <x> * q

procedure Get_Length (
a : in out Queue; --! preserves g
length : in out Integer --! produces length
) is abstract;

--! ensures
—-=1 length = [qgl

procedure Swap (
left : in out Queue; --! alters left
right : in out Queue --! alters right
) is abstract; '

--! ensures
-1 left = #right and right = #left

private

type Queue is abstract new Ada.Finalization.Limited_Controlled
with null record;

end AT _Queue;

Figure 5.2: Package Specification for AT_Queue (Continued)

119

necessary, In CCDs.we do not depiet uses relationships involving the Standard and
Ada.Finalization packages.

Unlike RESOLVE. Ada does not provide a swap operation for buili-in tvpes.
I order for-a built-in type to serve as an actual package parameter in COMpPo-
nent composition. the Swap procedure must be available. The special RA9S pack-
ace CI.Scalar Operations provides Swap procedures for the Ada buili-in types:
Boolean. Integer. Character. and Float. This package also provides (in procedure
form) commonly used operations for copving. equality testing. and order testing, As
disenssed in Section 5.2. Ada functions with in-mode only parameters present Serions
problems for component composition in RA95. We discuss a related issue. automatic
imitialization of built-in scalars. in Section 5.9.

5.4 The RESOLVE/Ada95 implements Relationship

In RA9S. conerete components ave either conerete kernel components or imple-
mentations of abstract extension components. This section describes conerete kernel
components and expression of the implements relationship between conerete and ab-
stract kernel components. Section 5.6 deseribes conerete components that implement
abstract extension components.

RA9S conerete kernel components. implementations of abstract kernel compo-
nents. are encoded in Ada as generie child unit packages. A concerete kernel com-
ponent s a generie child unit of the abstract kernel component that it implements.
As discussed in Sections 3.3 and 1.3, a single concrete component may implement
more than one abstract component. In RA95. however. cach implementation is per-
manently linked to a single specification that it implements. Thus. an implements
relationship is encoded directly into each conerete component in RA95. Limiting each
conerete template to a single implements relationship sacrifices little in practice and
results in simpler RA9S code.

Child units are a part of the hicrarchical library structure added to Ada in the
1995 langnage definition. A child unit is an Ada package that has full visihility to
the packace specification of another unit. its parent unit. Since a child unit mayv
he the parent unit to other child units. a hierarchy of related library units mayv be
constructed. Thus:a child unit uses its parent unit as well as anv other units above
it in the hierarchy (e.g.. its parent unit’s parent unit). The association of a child unit
todts parent is encoded by the package name of the child unit. A child unit package
name has as a prefix its parent unit’s package name followed by a period. Thus.
the packace AT_Queue.CT_2 is a child unit of the package AT_Queue. As a child unit.
AT Queue.CT_2 has implicit visibility to all of the AT_Queue package specification.
mcluding generie formal parameters and the private part. A child unit does not need
a with clanse for visibility to its parent unit.

120

(AT_Queue)

implements

AT_QueueCT_2

Figure 5.3: The implements Relationship in RA95

RA95 concrete component names encode (the claim of) an implements relation-
ship. The package name AT_Queue.CT_2, for example, identifies the “second” concrete
template that implements the queue abstract template. (The name is best inter-
preted from right to left.) By RA95 convention, numbers are used to distinguish
concrete templates which serve as multiple implementations of the same abstract
component. Use of this convention helps avoid long and possibly misleading compo-
nent names. Figure 5.3 shows the component coupling diagram depicting the imple-
ments relationship between concrete template AT_Queue.CT_2 and abstract template
AT_Queue.

Recall from Chapter 3 that a CCD depicts design dependencies that are inde-
pendent of any particular use of the components involved. In contrast, a component
instantiation diagram (CID) shows how the components in a particular system are
coupled with each other. Figure 5.4 shows the RA95-specific component instantiation
diagram depicting the parent-child relationship between abstract and concrete kernel
components. Note that this parent-child relationship is not a component relationship;
it is merely one possible technique useful for expressing the implements relationship
in Ada. In this example, the abstract parent unit AT_Queue is enclosed in the concrete
child unit AT_Queue.CT_2. This notation conveys the idea that the definition of the
child unit “includes” that of the parent unit.

CID’s, like CCD’s, depict abstract components with clear rounded boxes and
concrete components with shaded rectangular boxes. Specification parameters are
shown as arrowheads along the top of abstract components. In Figure 5.4, Item
is the only specification parameter shown. The generic subprogram parameter for
Swap for type Item is implied since all RESOLVE types provide Swap. The type
exported from a component is shown as an arrowhead on the right side of the box.
Implementation parameters (discussed later in this section) are shown as arrowheads
along the bottom of concrete components. A more detailed version of this notation

121

7 ltem
Queue
AT_Queue

AT_Queue.CT 2

A AT _One Way List

Figure 5.4 Conerete Child Coupled To Abstract Parent

(mot shown) includes the names of each exported operation in the lower richt corner
of the hox. CID's in subsequent sections will build npon this diagram.

An RAOS conerete kernel component exports a conerete tvpe and concrete primi-
tive operations of that type. The conerete type exported is a private type ertension
of the abstract type exported by its parent unit. The tvpe extension forms an inheri-
tance link between the conerete and abstract tvpes. This link is depicted in Figure 5.4
as the line connecting the abstract type exported from AT_Queue (AT_Queue.Queue)
to the conerete tvpe exported from AT_Queue.CT_2 (AT_Queue.CT_2.Queue). This
inheritance link requires the child unit implementation to provide concrete primi-
tive operations conforming (structurallv) to the abstract tyvpe's abstract primitive
operations. Therefore. an Ada compiler will ensure that a concrete component at
least provides the structural interface desceribed by the abstract component that it
mnplements. OF conrse. Ada compilers provide no help in checking whether a con-
crete component actually provides the hehavior specified by an abstract component.
The formal semantics. proof rules. and specification sub-languaee of the RESOINVE
lanenace do provide support for formally verifving the implements relationship.
thoueh,

Unlike abstract components, concrete components require both a package spec-
ification and a package hody, The package specification includes a public interfoee
section in which the exported type is derived from the abstract tvpe exported by
the parent unit. Placing this tvpe derivation in the public section provides a partial
vicu of the exported tvpe. The partial view provides a client of the implementa-
tion visibility to the exported conerete operations. but not to the tvpe's private data
representation. The interface section also includes a conerete subprogram header cor-
responding to each abstract operation in the parent unit. The package body includes
all of the corresponding subprogram bodies. The package hody also may include a
local operations section for local (private) subprograms used internally to implement
the exported operations.

122

The private part of the package specification includes a representation section
and an implicit operations section. The representation section defines the data struc-
ture used to maintain state information for each object declared from the concrete
component. The full view of the exported type is a single field record extension of
the abstract type in the parent unit. To ensure composability of components, the
single-record extension field is always named rep. The type of the rep field is the
tyvpe of the component’s data representation. If the representation has more than one
constituent component, the components are encapsulated in a single RA95 Recordn
component which serves as the type of rep. Recordn components are special RA95
components that export Swap and field selection operations. Recordn components
compose with other RA95 components and are responsible for encapsulating vari-
ous memory management strategies. Formal comments in the representation section
describe the implementation’s convention and correspondence. The convention spec-
ifies any representation invariants and the correspondence describes the abstraction
relation, a mapping between the representation states and the model states.

The implicit operations section is where the inherited Initialize and Finalize
operations may be overridden, if necessary. The exported concrete type inherits con-
crete null-bodied implementations of these operations from its abstract parent (which
inherits them from Limited Controlled). For typical components, the inherited
Initialize and Finalize provide the correct behavior. However, some components
will need to explicitly override these operations, especially Initialize.

Since a concrete kernel component is a child unit of an abstract kernel compo-
nent, it has direct visibility to any specification parameters. Thus, the specification
parameters are implicit parameters to the concrete kernel component. This idea is
conveyed in Figure 5.4 since the specification parameter Item on the top edge of
AT Queue is also on the top edge of AT _Queue.CT_2. In addition to implicit specifica-
tion parameters, a concrete component also may have additional parameters which,
if present, are included in the implementation parameters section. Implementation
parameters are encoded in RA95 as generic formal packages, types, and subprograms
for which actual parameters must be supplied through instantiation. We discuss how
implementation parameters are used to encode the needs relationship in Section 5.5.

Figures 5.5 and 5.6 show the package specification for the concrete template
AT Queue.CT_2 which implements AT_Queue shown in Figure 5.1. Figures 5.7 and 5.8
show the package body for AT_Queue.CT_2. These may be compared with the similar
concrete template implementing a stack shown in Figure 3.11. We discuss the needs
relationship encoded by this component in the next section.

5.5 The RESOLVE/Ada95 needs Relationship

As we discussed in Section 5.3, a fixed dependency on an Ada program unit
is encoded in RA95 by a with clause in the global context section. For example,

123

-- Cemponont: AT_Qucuc.CT_ 2

-- Reclations: implements AT_Qucue, needs AT _Onc_Way List
-~ Comments: gucuc Implemented with a Onc_Way_ List representation

AI_One_Way_List is new AT_Onc_Way_List (Item => Iter);

with package

type List is new AI_Onc_Way_List.List with private;
package A7_Qucuc.C7_2 is

procedure Dcgucuc (
¢ : in out Qucuc;
*x : in out Iterm
) ;

Figure 5.5: Package Specification for AT_Quene.CT22

end

procedure Get_Length (
a : in out Queue;
length : in out Integer

procedure Swap (

left : in out Queue;
right : in out Queue
)
-- Representation -—---—--—--—————---——-————————————

type Queue is new AT Queue.Queue with
record
rep : List;
end record;

--! convention

-=1! true

--! correspondence

--! g = g.rep.left * g.rep.right

-- Implicit Operations ------—-—-—-=—=————————————~~

AT_Queue.CT_2;

Figure 5.6: Package Specification for AT_Queue.CT_2 (Continued)

125

-- C ade! AT _Quecuc.CT_2

-~ Rolatlons: implements AT Qucuc, necds AT_Onc_Way_List

-~ JClomments: gucuc implemented with a One_Way_List represcntation

- Global ComtONE o m e o

1

I
bg

1
[
b
b
0
[
(4
o
9]
2
o
cr
=N
Q
o]
0

-- Irkerited null-bodied Initialize and Finalize

procedure Dcgucuc |
¢ : in out Qucuc;
®x : in out Iter

(g.rep);
(ag.rep, x);

end Dcouicuc;

Figure 5.7 Package Body for AT_Quene. (T2

126

procedure Get_Length (
a : in out Queue;
length : in out Integer
) is
begin
Move_To_Start (g.rep);
Get_Right_Length (g.rep, length);
end Get_Length;

procedure Swap (

left : in out Queue;
right : in out Queue
) is
begin
Swap (left.rep, right.rep);
end Swap;

end AT _Queue.CT_ 2;

Figure 5.8: Package Body for AT_Queue.CT_2 (Continued)

dependencies on standard Ada library units such as Text_I0 (which defines standard
input and output routines) must be encoded as fixed dependencies. Even so, many
of Ada’s standard library units are generic units or units exporting abstract types
(such as Ada.Finalization used by AT_Queue in Figure 5.1) and thus are structural
specifications of many possible implementations.

The needs relationship expresses a deferred dependency — dependence on a spec-
ification of behavior rather than on a specific implementation of behavior. In RA95,
as in RESOLVE, the needs relationship is encoded using parameterized components.
However, RA95 uses Ada’s type extension (inheritance) to constrain concrete compo-
nents serving as actual parameters to be implementations of the appropriate abstract
component. This approach was not possible in RA83 which used (potentially long)
lists of generic formal subprogram parameters to constrain type parameters [Hol92].
Nevertheless, encoding the needs relationship in RA95 is somewhat complex as it
makes use of a combination of several of Ada’s more advanced language mechanisms.

The uses relationship between a concrete template and an abstract component is
encoded in RA95 using a pair of related generic formal parameters and a with clause
in the global context section. The with clause names the abstract component upon

127

which the implementation depends. The first generic parameter is a generie formal
pockage porameter and the second is a generie formal dervived type. Both of these
ceneric parameters are new language mechanisms added to Ada in the 1995 language
definition. The actual parameter corresponding to the formal package parameter must
be an instance of the abstract package component being used. The actual parameter
corresponding to the formal derived type must be a tageed type derived from the
abstract type exported by the first actual parameter. Together. these two parameters
ensure that the imported type has all of the primitive operations specified in the
abstract packace. Therefore. the imported conerete type is constrained to have been
exported from a concrete component which implements the abstract component
being used. Of conrse. only the structural aspects of the implements relationship
are chiecked by the compiler,

Fignre 5.9 shows a CCD depicting the uses relationship between the conerete
template AT Queue.CT_2 and the abstract template AT One Way_List. The CT_2 im-
plementation of AT_Queue uses a One Way List as its representation as shown in
Fieures 5.5-5.7. One_Way_List is a list abstraction that supports list traversal in one
direction (thus allowing singlv-linked list implementations). It is modeled by a pair of
strings which conceptually represent the left and right parts of the list. Traversing the
list from left 1o right is modeled by moving the leftmost item in the right string to the
richtmost item in the left string. Thus. the current position within a One_Way_List
may be viewed as just to the left of the leftmost item in the right string.

AT One_Way_List specifies the following operations:

e Advance moves the current position one item to the right.

e love To_Finish moves the current position to the right of the rightmost item.
e Move_To Start moves the current position to the left of the leftmost item.

e Add Right inserts an item at the left end of the right string.

e Remove Right removes the item at the left end of the right string.
e Get_Left_Length returns the length of the left string. and

e Get Right _Length returns the length of the right string.

Figures 5.5-5.8 demonstrate how the needs relationship depicted in Figure 5.9 is
encoded in RA95. The with clause in the global context section (Figure 5.5) expresses
the fixed dependency of AT_Queue.CT_2 on the specification AT One Way_List. The
first generic parameter in the implementation parameters section is the formal package
AT One_Way_List. The actual parameter corresponding to this formal must be a
packace which is an instance of AT_One Way_List. Furthermore. this instance must
have been instantiated with the same Item tvpe as the instance of AT_Queue which

128

AT_QueueCT_z

needs

(AT_One_Way_Lisg

Figure 5.9: The needs Relationship in RA95

serves as the parent of an instance of AT_Queue.CT_2. References to AT_Queue within
AT_Queue.CT_2 refer to the instantiation of AT_Queue that serves as the parent unit
of the instantiation of AT_Queue.CT_2.

The second generic parameter is the formal derived type List. The actual pa-
rameter corresponding to List must be a concrete type derived (possibly indirectly)
from the abstract List type exported by the package serving as the actual param-
eter to AI_One_Way_List. Note that in a component instantiation diagram, a single
implementation parameter corresponds to the pair of generic parameters required to
express the needs relationship. For example, in Figure 5.4, the single implementation
parameter AT _One Way_List expresses the needs relationship just described.

At the programming language level, this encoding of needs assures that the im-
ported List type comes with implementations for all of the operations specified
in AT One_Way_List. In terms of component relationships, this strategy encodes
AT_Queue.CT_2’s dependency on the behavior specified by AT One_Way_List without
making AT_Queue.CT_2 dependent on a specific implementation of AT_One_Way_List.
In Sections 5.7.1 and 5.8 we present examples of how RA95 components may be
composed through instantiation of concrete templates.

5.6 The RESOLVE/Ada95 extends Relationship

In this section, we first discuss how the extends relationship is encoded between
two abstract components in RA95. Then, we discuss how a layered implementation
of an abstract extension component is encoded. We present example RA95 code for
both types of components.

5.6.1 Abstract Extension Components

The RESOLVE discipline encourages careful design of kernel components with a
minimally sufficient set of primary operations. New functionality is then added —

129

usually one operation at a time with components which extend the behavior of
existine components. The ideal choice of primary operations for a kernel component
is seldom obvious. One possible approach is to desien kernel components with no op-
erations (just an exported tyvpe). and then to add all operations as extensions. This
approach is being used with RESOILVE/C++ [Weid7]. The RESOINE/Ada95 disci-
pline currently takes the more conventional approach of including primary operations
with the kernel component. as deseribed in Section 5.2.

The extends relationship deseribes the behavioral relationship between two ab-
stract components as discussed in Section 3.5.1. Encoding the extends relationship
using the language mechanisims of Ada presents some challenges. Difficulties arise pri-
marily from needing to rely on Ada’s single inheritance mechanism. tvpe extension.
One of the difficnlties encountered when attempting to encode component relation-
shipsin Ada involves the expression of multiple relationships for a single component.
Ada does not directly support multiple inheritance. which has proven useful in RE-
SOLVE /C— = and does not distinguish between specification inheritance (structural
interface conformance) and implementation inheritance. as do newer OOPL’s. such
as Java.

RADS wses mirin inhervitanee to express multiple dependencies [Int95a. §4.6.2].
AMixin inheritance is expressed in Ada by deriving an exported tyvpe from another
tvpe imported as a generic parameter. In order to apply multiple extensions to a
component. nse of mixin inheritance requires chaining extensions together to form a
linear inheritance path. To support structural interface conformance of each concrete
extension component to an abstract extension component requires an inheritance
chain that alternates between abstract and coneretoe types.

An abstract extension component is encoded in RA9S as a generie child unit of
the abstract component it extends. By convention. the package name of the child unit
is the name of the parent unit followed by a period. followed by the string “With_".
followed by a name describing the new fimetionality. For example. the abstract tem-
plate AT_Queue.With Reverse extends AT_Queue by a specification of the quene re-
verse functionality. In general. it might be possible for a single abstract extension
component to extend more than one abstract component. In RA935. however. cach ab-
stract extension is permanently linked to a single specification that it extends. Thus.
the extends relationship is encoded direetly into cach abstract extension component
in RAOS.

Figure 5.10 shows the RAS-specitic CID depicting the parent-child relationship
hetween a kernel abstract component and an abstract extension component. In this
example. the abstract parent unit AT_Queue is enclosed in AT Queue .With_ Reverse.
the abstract child unit. Figure 5.10 appears similar to Figure 5.4 since RA9S uses
similar langnage mechanisms. tvpe extension and hierarchical library units. to encode
implements and extends. The primary difference is that AT_Queue.With_Reverse

130

V item
Queue
AT_Queue a

AT_Queue.With_Reverse

Figure 5.10: Abstract Parent and Abstract Child Extension

exports an abstract type whereas AT_Queue.CT_2 exports a fully-implemented con-
crete type.

The specification parameters section of an abstract extension component has a
single specification parameter which serves to support chaining of extensions. This
parameter is encoded as a formal generic derived type. The name of the formal pa-
rameter is the name of the exported type prefixed with the string “Base_”. The actual
parameter corresponding to this formal parameter is constrained to be a concrete type
derived from the abstract type exported by the abstract parent unit being extended.
For example, AT_Queue.With_Reverse, shown in Figure 5.10, has the specification
parameter Base_Queue. The dotted line between the type exported from AT_Queue
and the line extending from the specification parameter conveys the constraint on the
actual parameter for Base_Queue. Note that the actual parameter need not be derived
directly from the abstract type exported by (an instance of) the parent unit. The
actual parameter may be the result of many extensions to that type. This flexibility
allows multiple extensions of the same abstract component to be chained together.

The interface section of an abstract extension component includes an exported
abstract type publicly derived from the formal generic type parameter. The name
of the exported type is the same as the name of the abstract type from which it is
derived. (The exported type’s full name includes its package name, thus distinguishing
it from its parent type.) This derivation provides the mixin inheritance. Furthermore,
the exported type is a null record extension of the type imported by the generic
parameter. The null record extension means that the abstract extension component
does not augment the representation of the imported type. In Figure 5.10, the line
connecting the Base_Queue specification parameter to the abstract type exported
by AT_Queue.With _Reverse depicts the mixin inheritance link. The abstract type
exported by an instance of AT_Queue.With_Reverse has as primitive operations the
abstract queue reverse operation specified in the extension plus all concrete operations
of the type used as the actual parameter for Base_Queue.

The remainder of the interface section includes usually one, but possibly more,
abstract subprogram specifications. Each subprogram specification corresponds to

131

an operation providing new functionality to the abstract component being extended.
Stractured comments formally deseribe the functional behavior of the abstract oper-
ATHOTNIS.

Fieure 5.11 shows the Ada package specification encoding the abstract template
AT Queue.With Reverse. No package body is required as with abstract kernel com-
ponents. Note that normally the added operation to reverse a quene would be named
Reverse instead of Reverse Queue. Since reverse is a reserved word in Ada. how-
ever. it cannot be nsed as an operation name. Also note that reverse is a built-in
operation of the string theory mathematics in RESOINE s specification sub-langnace.
This explains how the ensures clanse of Reverse Queue may be expressed so concisely,

9.6.2 Implementation of Abstract Extension Components

Recall from Section 3.5.2 the three approaches to implenienting an extension com-
ponent: lavered. direct.and coupled implementations. Since the RESOINE discipline
primarily advocates use of the lavered approach. the strategy for encoding the ex-
tends relationship in RA95 was designed to hest support lavered implementations.
In this seetion we discuss how to encode a lavered implementation of an abstract
extension component.

The Tavered implementation of a conerete extension component is encoded in
RA9S as a generie child unit of the extension component it implements. The pre-
fix of child wnit’s package name is the name of the abstract extension component
(the parent unit name) followed by a period. Just like implementations of kernel
components, the name ends with the string “CT_" followed by a number identifving
the specific implementation. For example. the conerete extension component name
AT Queue.With Reverse.CT_1 denotes the first conerete template that implements
the reverse component that extends the quene abstract template. Again. the compo-
nent name is best interpreted from right to left,

Figure 512 shows the RAS-specific CID depicting the parent-child relationships
between a kernel abstract component. an abstract extension component. and a lavered
concrete extension component. In this example. the abstract extension component
AT_Queue.With Reverse (Figure 5.11) is enclosed in AT_Queue.With_Reverse.CT_1.
the conerete child unit.

A conerete extension component consists of a package specification and body
which are similar in straucture to those of a kernel conerete component. The packace
specification inelndes an interface seetion. a representation extension section. and pos-
siblv an implementation parameters section. The interface seetion includes a concrete
exported tvpe and conerete subprogram specifications. Just as with kernel conerete
components. the exported type is a private tvpe extension of the abstract type ex-
ported by its parent unit. This inheritance link is shown in Figure 5.12 as the line
connecting the abstract type exported from AT_Queue.With_Reverse to the concrote

132

-- Component: AT _Queue.With_Reverse
-- Relations: extends AT Queue
-- Comments: ‘Reverse’ 1s an Ada reserved word, hence Reverse_Queue

procedure Reverse_Queue (
g : in out Queue --! preserves g
) is abstract;

--! ensures
--! g = reverse(#qg)

end AT_Queue.With_Reverse;

Figure 5.11: Package Specification for AT_Queue.With_Reverse

133

¥ item Base

Queue Queue

AT_Queue

AT_Queue.With_Reverse

AT_Queue.With_Reverse.CT_1

AT Stack

A

Figure 5.12: Abstract Parent and Conerete Child Extension

tvpe exported by AT Queue.With Reverse.CT_1. In this example. both tvpes are
named Queue (as is the tvpe exported by AT _Queue).

Derivation of the exported concrete type in the public part of the package pro-
vides o partial view of the tvpe and ensures that the conerete operations imported by
the parent unit are re-exported along with the concerete exported type. For example.
the actnal parameter for Base_Queue in Figure 5.12 may include manyv extensions
to AT_Queue. However. the body of AT_Queue.With_Reverse .CT.1 onlv has visibil-
1y to the operations deseribed by AT_Queue.With_Reverse (which include those of
AT _Queue).

The interface section also ineludes one concrete subprogram specification corre-
sponding to cach abstract operation added by the parent unit to deseribe new fune-
tionalitv. The representation extension section is in the private part of the package
and contains the declaration of the exported type providing its full view. The exported
tvpe is a null record extension of the abstract type exported by the parent unit. The
implementation parameters section. if present. serves the same role as in kernel con-
crete components. Figure 5.12 shows the implementation parameter AT_Stack used
to express the needs relationship AT _Stack. Thus. AT_Queue.With_Reverse.CT.1 is
lavered on top of implementations of both AT_Stack and AT_Queue.

The package bhody of a conerete extension component includes one subprogram
body corresponding to cach added operation. Like its kernel component counterpart.
it also may inchide a local operations seetion to provide local subprograms used to
implement the exported operations.

Figure 5.13 shows the Ada package specification for the conerete extension come
ponent AT Queue.With Reverse.CT_1. Fignre 5.1 shows the corresponding package
body with the lavered implementation of the Reverse_Queue operation.

131

-- Component: AT Queue.With_ Reverse.CT_1
-—- Relations: implements AT Queue.With_ Reverse, needs AT_Stack
-- Comments: Reverse_Queue reverses a gueue using a stack

with package AT_Stack is new AT Stack (Item => Item);

type Stack is new AI_Stack.Stack with private;

procedure Reverse_Queue (
g : in out Queue

end AT_Queue.With_Reverse.CT_1;

Figure 5.13: Package Specification for AT_Queue.With_Reverse.CT_1

-- Cormrornent: AT_Qucuc.With_Reverse.CT_1

-- Re¢latlons: implements AT_Qucuc.With_Rcverse, nceds AT _Stack
-- Commonts: Reversco_Qucul roverses a queuc using a stack
prackage body ~A7_Qucuc.With_Reverse.CT_1 is

procedure Rcversce_Qucuc (

¢ : in out Qucuc
) Is

S : Stack;

> : Item;

length @ Integer := 0;

begin
Cez_Length (g, length);
while lcngth > 0 loop
--! al S

I
! ters g, s, length

! consumes X

! maintains rcverse(s) * g = reversc(#s) * #g and
-1 Ienoth = |qgl

! decreases gl

guicue (g, X);

end loop;

Get_Lencth (s, len
while lcrngth » 0 1
a , &, lecngth

--! consumecs X
--! maintains g * s = #g * #s and lecngth = [s]
--! decrcases gl

X

end Fcurerse Queouc:

end »7T_Qucuc.with_Reverse.CT_1;

Figure 5.1.1: Package Body for AT_Quene With_Reverse.(T_1

5.7 Other RESOLVE/Ada95 Relationships

The uses, implements, needs, and extends relationships each address a fun-
damental issue of software engineering. These relationships are likely to appear in
one form or another in any discipline for component-based software engineering. The
specializes and checks relationships described in this section arise from following
the principles of the RESOLVE discipline. The reader unfamiliar with RESOLVE
may find these two relationships, especially checks, new and interesting.

5.7.1 The RESOLVE/Ada95 specializes Relationship

As we discussed in Section 5.3, one of the principles of the RESOLVE discipline is
that implementations should be fully parameterized. In terms of component relation-
ships, this means that design dependencies should be expressed in terms of needs,
instead of uses, whenever possible. In addition to reducing component coupling,
this approach also supports parametric adjustment of the performance character-
istics of concrete components [Sit92]. For example, the performance of the queue
implementation AT_Queue.CT_2 shown in Figure 5.7 depends on which One _Way_List
implementation a client provides as an implementation parameter. The client of this
component may “tune” the performance of a concrete component by choosing among
different implementations of the components it uses. ‘

The disadvantage of fully parameterized concrete components is that they are
more difficult for clients to use. For example, most client programmers who want
to use a queue component in their application will not want to be bothered with
selecting a list implementation. (The list implementation might also require its own
implementation parameters, and so on.) The RESOLVE framework solves this prob-
lem with a specialization component. A specialization component is a concrete com-
ponent for which some and usually all of the needs relationships have been fixed to
uses relationships. That is, specialization components are not fully-parameterized.
A specialization component is produced by internally instantiating implementation
parameters of a fully parameterized component and then re-exporting the interface
and behavior of the resulting instantiation. A RESOLVE component library may
contain several specialization components associated with each fully parameterized
kernel concrete component.

The specializes relationship is a special case of the uses relationship. We define
the specializes relationship informally as follows:

Concrete component Cy specializes concrete template C if and only
if Cy uses C7 and all behavior implemented by C, is provided by an
instantiation of C;.

A specialization component is a concrete component that specializes another
concrete component. The component coupling diagram in Figure 5.15 depicts the

137

(AT_Queue j

specializes)
implements
AT_Queue.CT_2a AT_Queue.CT_2
needs

(AT_One_Way_Listj

Fignre 5.15: The specializes Relationship

specializes relationship between two conerete components: AT Queue.CT_2a and
AT Queue.CT_2. AT Queue.CT_2a is a specialization component which depends on the
fullv-parameterized implementation AT_Queue.CT_2. In this example. the special-
izes relationship indicates that AT_Queue.CT_2a has been created by internally in-
stantiating AT Queue.CT_2. Within AT _Queue.CT_2a. one particular component that
implements AT_One_Way_List must be used as the implementation parameter to
instantiate AT Queue.CT_2. The interface and behavior exported by the internal in-
stantiation of AT_Queue.CT_2 is re-exported as the complete interface and bhehavior
of AT_Queue.CT.2a.

Several implicit relationships not shown in Figure 5.15 mayv be deduced from
those shown. First. AT_Queue.CT_2a uses AT_Queue.CT.2 by the definition of spe-
cializes. Sccond. AT_Queue.CT_2 also uses somie component which implements
AT One Way List because of the uses relationship shown. Third. and most impor-
tant. AT_Queue.CT 2a implements AT_Queue because of the implements relation-
ship shown. Thus. an instance of AT Queue.CT_2a is behaviorally substitutable for
an instance of AT_Queue.CT_2 with respect to AT_Queue. The difference between
these two implementations of AT_Queue is that the non-functional characteristics of
AT Queue.CT_2a have been fixed while some of the non-functional characteristics of
AT Queue.CT.2 mayv still he adjusted.

A specialization component is encoded in RA95 as a generie child unit package
specification. No corresponding package body is needed. The parent unit is the ab-
stract component which the component being specialized (and thus also the special-
ization component itself) implements. By convention. the name of a specialization
component is the same as that of the component it specializes appended with a

138

single letter used to distinguish between multiple specializations of the same compo-
nent. For example, the name AT_Queue.CT_2c identifies the “third” specialization of
the “second” implementation of the queue abstract template.

A specialization component contains a global context section, an interface sec-
tion, a local instantiations section, and a representation section. Typically all of the
parameters of the component being specialized are fixed. In this case, there will be
no implementation parameters section and no generic formal parameters. The fixed
dependencies on the component being specialized and on the components selected
to serve as implementation parameters appear as with clauses in the global context
section. The interface section of a specialization component declares the exported
concrete type as a private type extension of the abstract type exported by the parent
unit. This partial view of the exported type assures that a client of this component
has visibility to all operations described in the abstract parent unit. The implemen-
tations of these operations are provided in the private part and thus no operations
need to be declared in the interface section.

The private part of the package contains the local instantiations and representation
sections. The local instantiations section contains all package instantiations necessary
to supply actual parameters to the final instantiation in this section. The final instan-
tiation creates an instance of the component being specialized. This package instance
supplies the concrete type to be re-exported by the specialization component. The
representation section consists of a null record extension of the concrete type to be
re-exported. This type extension creates the full view of the concrete exported type.

An example of a specialization component is AT_Queue.CT_2a. This component is
a concrete template which specializes AT_Queue.CT_2 (Figure 5.5) and uses the spe-
cialization AT_One_Way_List.CT_la (not shown) to instantiate AT Queue.CT_2. Note
that AT_Queue.CT_2a implements AT Queue. Figure 5.16 shows a component in-
stantiation diagram detailing how AT_Queue.CT_2a has been implemented. From the
information summarized in this diagram, it would be straightforward for a tool to
automatically generate the Ada code for AT_Queue.CT_2a shown in Figure 5.17.

The local instantiations section of AT_Queue.CT_2a includes three package instan-
tiations. The first creates AI_One_Way_List, an instantiation of AT_One_Way_List
with the same Item type as AT_Queue. This instantiation is depicted in Figure 5.16
by the line connecting the Item specification parameter of AT_Queue to that of
AT One Way_List on the left side of Figure 5.16. The second instantiation creates
CI_One_Way_List, an instantiation of AI_One_Way_List formed by selecting the “1a”
implementation of AT One_Way_List. This instantiation is depicted by showing the
implementation AT One Way_List.CT_la around the specification AT_One Way_List
in the lower left corner of the figure. The final instantiation creates CI_Queue,
a concrete instance of AT_Queue.CT_2, the component being specialized. This in-
stantiation is depicted in Figure 5.16 by placing the AT Queue.CT_2 implementation

139

Item
Queue

AT_Queue

Queus
Al Queue

AT _Queue.CT 2
AT One Wiy Ust

e
(Us
AT One Way Listp-p

AT _One Way List.CT ta AT__Queue.CT_Za

Figure 5.16: A Detailed View of AT_Queue.CT_2a

around the AT Queue specification and by the line connecting the type exported by
AT One Way_List.CT_1a to the implementation parameter of AT _Queue.CT_2.

Note that the component name AI_Queue in Figure 5.16 refers to an instance
of AT_Queue with the tyvpe Item fixed. Within the child unit AT _Queue.CT_2a. the
packace name AT_Queue implicitly refers to this package instance. an instance of its
generie parent unit. In Figure 5.16. the line from the type exported by AT_Queue .CT_2
to the tvpe exported by AT _Queue.CT_2a depicts the inheritance link between these
two tvpes. The null record type extension at the end of AT_Queue.CT_2a encodes this
inheritance link.

5.7.2 The RESOLVE/Ada95 checks Relationship

This section deseribes ehecking components and the associated checks relation-
ship. Checking components are very useful components within the RESOLVE frame-
work. Their utility largely results from the lavered wayv in which RESOIVE compo-
nents are desiened and implemented.

One of the principles of the RESOLVE discipline is that clients should be respon-
sible for checking the preconditions of operations. This approach avoids UNNeCeSSary
inefficiency and simplifies component implementations. Furthermore. it respects the
contractnal relationship expressed by the implements relationship. A component
implementer is responsible for providing all hehavior deseribed by the abstract COMmMpo-
nent and no more. If a conerete component must handle exceptional events. then the
abstract template should deseribe what behavior is required for exceptional events.
If o client uses an operation when its precondition is not satisfied. then the concrete

10

-- Relations: specializes AT Queue.CT_ 2, uses AT One_Way_ List.CT_la
-—- Comments: -

with AT_Queue.CT_2;
with AT _One_Way_List.CT_la;

generic

package AT Queue.CT_2a is

-— Component: AT Queue.CT 2a

package AI_One_Way_List is new
AT One_Way_List (Item => Item);

package CI_One_Way_List is new
AIl_One_Way_List.CT_la;

|
|
1 package CI_Queue is new
‘ AT_Queue.CT_2 (
AI_One_Way_List => AI_One_Way_List,
1 List => CI_One_Way List.List
|)i

Figure 5.17: Abstract Template AT Queue.CT_2a

141

end T _Qucuc.CT 2a;

Figure 5180 Abstract Template AT_Queue.CT_2a (Continned)

component exporting that operation is free to do anvthing or nothing from that point
o1,

Particularly during the testing and debugging of new implementations. unreliable
code may erroncously call operations with violated preconditions. In RESOLVE. the
behavior of the implementations is unspecified once a precondition violation takes
place. As a result. locating errors while debugging mav be very difficult. Thus.
checkine the preconditions of operations is useful when there is a lack of confidence in
the correctness of implementations within a software system. A checking component
addresses this problem by checking operation preconditions hefore calling unprotected
operation implementations.

A checking component is a conerete component with characteristies similar to both
an extension component and a concrete component. Like an extension component.
it adds new functionality to another component. The additional behavior consists
of checking to see if a precondition is satisfied. and if not. reporting the violation
and halting exeention of the program immediately. Unlike an extension component.,
however.a checking component provides no additional specified behavior. Like a typ-
ical conerete component. a checking component provides the interface and behavior
specified by an abstract template. However, a checking component does not directly
provide the specified functionality it exports. Instead. a checking component uses
the abstract template which it implements to provide its exported hehavior. That
i~. a checking component is implemented by lavering the checking functionality on
top of a conerete component that provides the desired specified behavior. Therefore.
a single checking component may be used to check any conerete component which
implements the abstract component it checks.

The checks relationship expresses part of the dependeney between a conerete
component and an abstract component. The checks relationship mayv be defined
informally as follows:

142

(AT_Queue j
Tchecks

AT_Queue.CT_0

Figure 5.19: The checks Relationship

Concrete component template C' checks abstract component A if and
only if (a) C implements A and (b) C' immediately reports violations of
all operation preconditions described by A.

A checking component is a concrete component which checks and needs the
same abstract component. It is possible to have the relationship C' checks A without
the relationship C' needs A. However, such a C, one which directly implements the
behavior of the component it checks, would not be nearly as useful as a checking
component.

The CCD in Figure 5.19 depicts the checks relationship between the checking
component AT_Queue.CT_0, and the abstract component AT_Queue. The only precon-
dition specified by AT_Queue is that the Dequeue operation may not be called with an
empty queue object. Therefore, if a client of AT_Queue.CT_0 tries to dequeue an item
from an empty queue, an error report will be issued and the program will halt. Note
that in the case of a checking component, the needs relationship is omitted from the
CCD. A slightly more complex notation which includes template parameters makes
explicit this uses relationship for checking components.

A checking component is encoded in RA95 as a generic child unit of the abstract
template which it checks. By convention, the package name CT_0 is prefixed by the
name of its parent unit. Since the child unit has direct visibility to its parent, the
uses relationship with its parent is implicit. Thus, the global context section in a
checking component is empty. The implementation parameters section contains a
single generic formal derived type. The name of this type is the name of the exported
concrete type prefixed by the string Base_. The actual parameter for this formal type
must be a type derived from the abstract type exported by the parent unit. Thus,
the type exported by any component which implements the parent unit may serve
as an actual parameter.

Figure 5.20 shows the RA95-specific component instantiation diagram depicting
the parent-child relationship between a kernel abstract component and its concrete

143

v item

Queue
AT_Queue e

AT_Queue.CT_0

Base Queue

Figure 5.20: Abstract Parent and Conerete Checking Child

checking component. In this example. AT_Queue.CT.0 is the checking component for
AT Queue. The implementation parameter Base_Queue. like all other implementation
parameters. is shown along the bottom edge of the conerete component. The dotted
line convevs the constraint that the actual parameter supplied for Base_Queue must
bea tvpe derived (possibly indirectly) from the type exported from an instance of
AT Queue.

The interface section of a checking component package specification includes the
declaration of the conerete exported tvpe. The exported tvpe is a null record extension
of the imported generie formal tvpe. Thus. the representation of the component
on which the checking component is lavered is not altered. The inheritance link
extablished by this type extension is depicted in Figure 5.20 by the line connecting
the Base _Queue implementation parameter to the type exported by AT_Queue . CT.0.

For each operation with a precondition (aside from “true™) in the parent unit. the
child unit inclhiudes a corresponding conerete subprogram sicnature. These operations
override those with matching signatures inherited from the generic tvpe parameter.,
This is another use of mixin inheritance. While overriding inherited operations is
generally a threat to preserving hehavioral substitutability. this overriding is safe as
lone as the RAOS discipline is followed. It is safe beeause the overriding operation
provides the identical specified hehavior as the overridden operation. where the pre-
condition holds (it is permitted to have any behavior where the precondition does not

holdy,

The package hody of a checking component provides the implementations of each
overriding operation. The body of each overriding operation first checks to see if
the precondition for that operation is satisficd. One of RESOLVE's guidelines for
the selection of primitive operations is that they include any operations necessary to
check all preconditions. Therefore, the code to check the precondition may be lavered.
Once the cheek is made. some mechanism must be used to report the error and halt

the program. if necessarv. The ideal mechanism used depends upon the run-time

Ny

environment in which the RA95 programs will be run. Many Ada compilers provide
an Assert pragma which is useful for this purpose.

If there are no precondition violations, the body of the overriding operation calls
the operation it has overridden. This requires use of Ada’s view conversion. Inside
the body of the overriding operation, a formal parameter of the exported type is
converted to the type of its parent when used as an actual parameter in the call to
the overridden operation.

Figure 5.21 shows the RA95 package specification for the checking component
AT _Queue.CT_0. Figure 5.22 shows its package body. AT Queue.CT_.O is a concrete
template which checks the kernel abstract component AT_Queue shown in Figure 5.1.
The implementation shown here depends on the Assert pragma as implemented by
the GNAT Ada compiler.

5.8 Instantiation of RESOLVE/Ada95 Components

In this section we briefly explain and provide an example of how RA95 compo-
nents may be instantiated to form concrete instances which may be used directly in
applications. Recall that a concrete component is a subsystem implementation for
which all parameters have been fixed. Thus, a concrete component exports a con-
crete type which may be used directly by another component or application program.
In Section 5.7.1, we explained the instantiation of several components within the
package specification of CT_Queue.CT_2a. These local instantiations were depicted in
Figure 5.16. Instantiation of components for use by application programs is similar.

The process of building a concrete instance generally proceeds as follows. First,
a kernel abstract instance is produced by an instantiation which binds the specifi-
cation parameters of a kernel abstract template. Then a kernel concrete instance
is produced by an instantiation which binds a specific implementation to the ker-
nel abstract instance. This instantiation may involve supplying actual parameters
for implementation parameters. Then, if necessary, the functionality of the kernel
concrete instance may be augmented through a sequence of abstract and concrete
extensions. For each abstract extension, the type exported from the most recently
constructed concrete instance serves as the actual parameter for the specification
parameter. Each abstract instance created by an abstract extension must then be
supplied with an implementation in the same manner as the kernel abstract instance.
Checking concrete instances may be introduced after the kernel concrete instance has
been created. A checking component is produced by supplying a concrete instance as
an implementation parameter to a checking concrete template.

Figure 5.23 shows a CID depicting the composition of components to form the
concrete instance CI_Enhanced_Integer_Queue_l1. This concrete component pro-
vides the behavior specified by AT_Queue extended with AT_Queue_With Reverse and

145

AT _Qucuc.CT_0
checks AT_Qucuc
GNAT -a switch must be on when compiling this and clie:

s

>

£ion Paramobers -—-—-- - - m - mm e e

package »7T_Queue.CT7_0 is
type Qucuc is new Basc_Qucuc with null record;

procedure Dcgucuc (
¢ : in out Qucuc;
X : in out Iterm

end ~T_Quecuce.CT_0;

Ficure 5.21: Package Specification for Abstract Template AT_Queue . CT_0

146

-- Component: AT Queue.CT_0
-— Relations: checks AT _Queue
-- Comments: GNAT -a switch must be on when compiling this and clients

procedure Dequeue (
g : in out Queue;
X : in out ITtem
) is
length : Integer := 0;
begin
Get_Length (g, length);
pragma Assert (length > 0,
“Dequeue pre-condition (g /= empty_string) violated”);
Degqueue (Base_Queue(q), X);
end Dequeue;

end AT _Queue.CT O0;

Figure 5.22: Package Body for Abstract Template AT _Queue.CT_0

AT_Queue _With Replica® (not shown). Note that a component library suitable for
production use is likely to contain a wide variety of ready-to-use concrete instances,
especially for common data structures such as queues. Therefore, it is unlikely that
a component library user would ever need to construct this concrete instance.

One new notation introduced in this diagram is the striped rectangle containing
“Integer”. This notation is used to distinguish Ada built-in types such as Boolean,
Integer, Character, and Float from types exported from library components.

26The Replica operation makes a value (deep) copy of an object. In RESOLVE, this is a usually a

layered secondary operation. However, the Replica operation required for the built-in type Integer
is provided by the special package CI_Scalar Operations.

147

Integer Cl_Enhanced_Integer_Queue_1

e
O
AT oueue""'3

AT Queue.CT 28

Guaue) [Beee
Al Queue

AT GQueue.With Reverse

AT Queue With Reverse.CT 1a

aveue) [aont
Al Queue >

AT Queue.With Replica

[~]

AT _Queue.With Replica.CT 1a

Ficure 5.23: A Detailed View of CI_Enhanced_Integer_Queue_1

The rightmost arrow tonching the exterior boundary of Figure 5.23 represents the
Queue type exported from CI_Enhanced_Integer Queue_1. The specified behavior of
objects of the exported Queue type is the union of the specifications named by the
clear rounded hoxes throngh which the chain of arrows travels. The implementations
providing the actual hehavior of objects of this type are named by the shaded rect-
ancular boxes (incliding that of the built-in type Integer) throngh which the chain
of arrows travels.

The Ada package specification which encodes CI_Enhanced Integer_Queue_1 is
shown in Fignre 5.2.0 Figure 5.23 graphically depicts this code. The conerete instance
CI_Scalar.0Operations provides Swap and Replica procedures for Ada built-in types
siuch as Integer.

5.9 RESOLVE/Ada95 Design Issues

The development of the RAS approach presented in this chapter involved explor-
e many challenging design issues and making some compromises. Type extension
and hierarchical library units. in particular, presented opportunities and challenges
not addressed in the development of RA83. While Ada’s good support for modularity

148

-- Component: CI_Enhanced_ Integer_ Queue_1

-- Relations: uses AT _Queue.CT_2a, uses AT Queue.With Reverse.CT la,
-— uses AT Queue.With_Replica.CT_la

-- Comments: CI_Scalar Oparations provides Swap for built-in Integer

with CI_Scalar_Operations;
use CI_Scalar_Operations;

with AT Queue.CT_2a;

with AT_Queue.With_Reverse.CT_la;
with AT_Queue.With_Replica.CT_la;

-- instantiate AT _Queue with Integer

package AI_Integer_ Queue is new
AT Queue(Item => Integer);

-- implement AI_Integer Queue with CT 2a

package CI_Integer_Queue is new
AI_Integer_Queue.CT_ 2a;

-- extend AI_Integer Queue with Reverse

package AI_Integer_ Queue_With_Reverse is new
AI_Integer_Queue.With_Reverse (
Base_Queue => CI_Integer_Queue.Queue);

Figure 5.24: Package Specification for CI_Enhanced_Integer_Queue_1

149

-- implement AT _Quecuc_With_Reverse with CT la

package CI_Intcger_Qucuc_With Reverse is new

AZ_Integer_Queue_With_Reverse.CT la:

imr

package C._Integer_Qucue_With_Reverse_And_Replica is new

Al_Integer_Queuc_With_Replica.CT_ la;

type Qucuc is new CI_Integer_Qucuc_With_Reverse_And_Replica.Queue
with null record;:

Fieure 5.25: Packace Specification for CI_Enhanced.Integer _Queue_1 (Continued)

and eenericity makes it possible to apply much of the RESOIN'E discipline using Ada.
RESOLVE and Ada are far from being a perfeet mateh. In this section. we discuss
some of the major issues faced in the development of RA9S.

5.9.1 Initialization of Built-in Scalars

Dealing with Ada’s built-in scalar types represented a particularly challenging
probleni. In Ada. controlled types may be used to provide antomatic initialization
and finalization for all user-defined tvpes. Alltvpes derived from Ada . Finalization's
Controlled or Limited_Controlled types have automatic initialization and finaliza-
tion. Exeept for access types which must be initialized to null. Ada’s built-in scalars

150

do not have any automatic initialization. In fact, built-in scalars may have initial
values that are invalid representations of their type [Int95b, §3.3.1(21)].

If Ada required a scalar to be initialized to a wvalid value of its type (not nec-
essarily a particular fixed value), then for reasoning purposes, the initial value of a
scalar could be assumed to be a specific undetermined default value and uninitialized
scalars could have been used in RA95. In this case, scalar types would only lack a
potentially useful initial value. However, since uninitialized scalars may have invalid
representations, they cannot be passed as arguments to operations since this might
raise a Constraint_Error or Program Error at runtime [Int95b, §13.9.1(9)].

In RESOLVE, every variable is initialized to a value of its type at the beginning
of its scope (upon creation). A common idiom in RESOLVE is to swap the values of
a local variable and a consumes mode parameter at the beginning of an operation.
This swap is done to obtain an initial-valued object to return for the consumes mode
parameter and to ensure finalization of the consumed object before the return. Using
uninitialized scalars, such a call to Swap could cause a run-time error.

Ada’s Normalize_Scalars pragma defined in the Safety and Security Annex of
[Int95b] requires variables of each scalar type to be initialized to a specific documented
value. However, the implementation advice for this pragma recommends that the
initial value be an invalid value for that type, if possible [Int95b, §H.1(1)]. Thus,
Normalize_Scalars, which is intended to make it easier to detect use of scalars before
programmer initialization, advises that compilers do exactly the opposite of what
RA95 needs upon initialization. Therefore, Normalize Scalars, when implemented
faithfully, is of no use for implementing RA95.

One approach to built-in types, adopted by RESOLVE;, is to eliminate built-in
types from the language [Har90, §3.3.2]. Unfortunately, this solution cannot be used
with Ada or C++ which rely heavily on built-in types, and is impractical when the
syntactic sugar that comes with built-in types cannot be duplicated for user-defined
replacements.

The solution we chose was to alter compiler source code so that scalars are au-
tomatically initialized. We modified the implementation of the Normalize_Scalars
pragma in the publicly available GNAT source code. The modified compiler satisfies
the requirements of the language definition, although it is in direct opposition to the
implementation advice provided. This is not an ideal approach due to portability
issues, but it does not result in the awkward coding style and inefficiencies of the
alternatives.

5.9.2 Limitations of Child Units

The use of generic child units for encoding the implements and extends rela-
tionships has several advantages. As discussed in Section 5.4, concrete component has
direct visibility of any specification parameters and other elements within its generic

151

parent unit. Also. the child unit naming convention is convenient Using child units.
however. does present some limitations. Ada does not allow the instantiation of a
parent unit within a child unit of that parent. The parent unit is within the scope of
the child unit. thus making such an instantiation recursive. and Ada does not support
recursive instantiation of generic units. As a result. a concrete component cannot ere-
ate and use an instantiation of a sibling unit for which the parent unit has different
specification parameters. This precludes specialization components that fix one or
more specification parameters from being child units of the kernel concept that they
specialize. While partial instantiation of only implementation parameters works in
some cases. there are subtle situations where mutual recursion of instantiated units
can prevent an instantiation that is legal in RESOINE.

Asan example of this problem. consider the local instantiation of CI_One_Way_List
shown in Figure 5.17 on page 141, If the implementation. AI_One Way_List.CT_1a in
this case. were built using an implementation of AT_Queue. then the instantiation of
CI.One Way_List would include an instantiation of AT_Queue. Therefore. any instan-
tiation of AT Queue.CT_2 would include an instantiation of AT_Queue which is not
allowed in Ada. In generall the recursion among two or more components could be
hidden in deeply Tayered implementations. While cases of mutual recursion such as
this might not arise frequently. general solutions for avoiding it tend to be too overly
constraining.

5.10 Chapter Summary

In this chapter we demonstrated how the behavioral relationships defined in Chap-
ter 3 can be encoded in Ada. In doing so. we also presented most aspects of the RE-
SOLVE /Ada95 discipline for software component engineering. Ada is better equipped
to encode these relationships than most programming langnages due to its strong sup-
port for modularity and parametric polvmorphism. However. new language mecha-
nisins. such as type extension (inheritance) and hierarchical libraries (component
extension). added 1o Ada in 1995, have also proven useful for encoding component
relationships.

As with langnages is the Module-2 family. but unlike most other languages. Ada
components (packages) must explicitly name any components upon which they de-
pend. Ada’s with context clanse thus serves well for encoding the uses relationship.
We nse Ada's abstract types and abstract operations to encode the structural as-
pects of an abstract component. Behavioral specifications are recorded in structured
comments using the RESOLVE specification notation. Ada’s tvpe extension (single
inheritance) and child unit mechanisms are used in conjunction to encode both the
implements and extends relationships. We use mixin inheritance to encode multi-
ple dependencies with extension implenentations. The needs relationship is encoded

152

ing the uses relationship between the concrete template that needs the abstract
component.

In Section 5.7, we discussed the specializes and checks relationships which are
somewhat unique to the RESOLVE approach. These are both special cases of the
implements relationship. We concluded this chapter with a discussion of several
RA95 design issues. Even with its extensive assortment of language mechanisms, Ada
does not provide an ideal level of support for the RESOLVE approach to component-

in Ada using a pair of related generic formal parameters and a with clause encod-
based software engineering.

\

|

153

151

CHAPTER 6

CONCLUSION

In this chapter we summarize the research conducted for this dissertation and
present conclusions drawn from it. We then present the contributions of this research
to the field of computer science, and conclude with a discussion of areas for future
work.

6.1 Summary and Conclusions

This dissertation defends the thesis that component-level maintenance of software
systems may be based on a small set of behavioral and dependency relationships
between software components, and that these relationships can be encoded with the
language mechanisms provided by modern programming languages, although not as
easily as should be possible. Chapters 2 and 3 address the first part of this thesis.
Chapters 4 and 5 address the second part.

In Chapter 2, we developed a relatively simple set theoretic model of behavioral
relationships between software components. The model does not depend on a spe-
cific language syntax or semantics. Instead, it assumes that a language syntax and
semantics are defined. Then the model defines behavioral relationships between com-
ponents, which may be specifications or implementations, either of which may be
parameterized or not. The relations defined, imps, exts, uses, and needs, are used
to model behavioral conformance and dependencies between components.

Chapter 3 explains how the relations defined in Chapter 2 may be used for
component-level maintenance of software systems. In order to remove one component
from a system and replace it with a behaviorally compatible component, components
must be designed with two relationships clearly documented. First, each component
in the system that uses the component to be replaced must state its behavioral
requirement for a suitable implementation. This is the role played by the needs re-
lationship. Second, each component should state its behavioral conformance to one
or more specifications. This is the role played by the implements relationship. The
extends relationship is important for adding new functionality to components, while

155

maintaining conformance to existing specifications. and thus minimizing the effects
of chances.

Modern programming langnages do not provide ideal support for encoding the he-
havioral relationships we define. Chapter 1 deseribes a variety of approaches to usine
the mechanisins of modern programming languages to encode these relationships. In
Chapter 5.0 we demonstrate specifically how the relationships defined in Chapter 3
can be encoded in Ada. Chapter 5 also presents the RESOINE/Ada95 discipline for
software component engineering.

6.2 Contributions

The foeus of this research has been to define a set of behavioral relationships
between software components and to investigate wavs in which these relationship
may be encoded using modern programming langnages. The primary contributions
of this research to the field of computer science are as follows:

A Mlodel of Software Component Relationships
The model of software component relationships developed during this research

mantics of relationships between executable program components. specifications. and
templates. The chief leverage gained by using the model is that the meaning speci-
fications and templates may be understood in terms of the semanties of operational
prouram components rather than just as syntactic transformations of strings of char-
acters. The model is independent of the Tanguage used to encode components and
the formalisms used to verify the correctness of an implementation.

Definition of Relationships Supporting Component-Level Maintenance

The component relationships defined in Chapter 3 serve as a basis for component-
level maintenance of software hecanse they allow dependencies between components
to bestated in terms of behavioral requirements. rather than purely svntactic require-
ments. This allows implementation components to be decoupled from each other prior
to systenn integration and promotes a clear distinetion between design dependencies
and integration dependencies. The examples presented in Chapters 3 and 5 demon-
strate how these relationships may be used in practice to support the well-established
software engineering principles of modularity, information hiding. polvmorphism. and
extendibility,

156

The RESOLVE/Ada95 Discipline

The RA95 discipline for component-based software development, presented in
Chapter 5, was developed as part of the research effort documented in this disserta-
tion. RA95 provides a way for software engineers to apply the principles of RESOLVE
in a well-supported and widely available programming language suitable for develop-
ment of large complex software systems. In addition to providing a concrete example
of how component relationships may be encoded, RA95 illustrates new and inno-
vate uses of Ada’s unique language mechanisms. In particular, RA95 demonstrates
how parametric polvmorphism (in the form of Ada generics) and subtype polymor-
phism (in the form of Ada type extension) may be used in combination to develop
well-encapsulated extendible template components. Also, the component instantia-
tion diagrams presented in Chapter 5 should serve as a useful aid for explaining and
generating often complex compositions of Ada components.

6.3 Future Research

Future work in the area of software component relationships might progress in
several directions. The following sections each discuss a potential area for further
research.

Applying the Model to Physical Components

An interesting aspect of the component relationship model presented in Chapter 2
is that appears general enough to apply to physical components as well as software
components. While physical systems are not syvmbolic, they do exhibit behaviors
and their design documents are symbolic. Figure 2.1 on page 15 suggests how the
implements and needs relationships might be applied in physical systems. Using a
single behavioral framework to describe both software and hardware artifacts might
prove useful in dealing with formal models of embedded systems, where the physical
system being controlled and the embedded software must be analyzed and designed
together. Such a framework might also lead to a better understand the similarities
between well-engineered physical systems and well-engineered software systems.

Extending The Model

One of the strengths of the component relationship model presented in Chapter 2
is its relative simplicity. The model is expressive enough to capture the second-order
nature of templates which matches the full capability of templates in programming
languages such as Ada and C++. Sitaraman has pointed out, however, a practical
need for allowing (uninstantiated) template components as parameters to template
components [Sit92]. Such “higher order” component compositions are expressible

157

within the ACTT model. but not within the model presented in Chapter 2. Extending
the component relationship model to allow expression of higher order compositions
would be a worthy avenne of further research.

Component Relationship-Based Tools

The component relationships presented in this dissertation shonld be very useful
for oreanizing and using software component libraries. Current navigation tools such
as “class browsers™are based on direct conpling relationships. inclnding inheritance
link<. A library navigation 100l based on behavioral (semantically significant) rela-
tionships should be more useful. especially for integration of existing components and
component-level svstem maintenance, Designing and implementing a tool based on
the relationships presented in Chapter 3 would likely he a useful direction for further
work.

Another interesting effort would be the design and development of a component
composition tool that generates instantiation code. such at that shown in Figures 5.2
and 5.25 on pages 119 and 150, through graphical manipulation of a corresponding
component instantiation diagram. such as that shown in Figure 5.23 on page 148.

Further Developing RESOLVE/Ada95

There are a number of avenues for further development of RA95. Initial efforts
to include run-time selectable (dynamically hbound) components in RA95 (including
effort= by Falis [Fal95]) were not fully successful due the complexity of code recuired
and problems with carly: Ada95 compilers. With improved Ada93 compilers and
experience with parallel efforts in RESOLVE/C+4-. it may be worth re-investigating
this arca of research,

Despite Ada’s mismatches with the RESOLVE language. ensuring that RA95 code
i~ lecal (portable) Ada code thus far has been a priority in the development of RA95.
Neverthelesso the public availability of well-documented source code for the GNAT
compiler offers the opportunity to modify the RA95 source language so that it is more
suitable for RESOLVE-style components. As disenssed in Section 5.9.1. the GNAT
compiler was modified to antomatically initialize sealars. Modifving GNAT by adding
Swap (perhaps as infix =:=:") as an intrinsic operation for built-in scalars. adding it
to Ada.Finalization. and allowing “in ont™ parameters for functions. would make
RADS source code much simpler and the generated object code more efficient.

[AGBHT7)

[BLMY6]

[Boo87]

[Boo90]

[Boo94|

[BRO7]

[BS92]

[Bud91]

[CE95]

[Clag5]

BIBLIOGRAPHY

A. L. Amber, D. I. Good, W. F. Burger, and C. G. Hoch. GYPSY: A
language for specification and implementation of verifiable programs.
ACM SIGPLAN Notices, 12(3):1-10, March 1977.

Joseph A. Bank, Barbara Liskov, and Andrew C. Meyers. Parameter-
ized types and java. Technical Report MIT LCS TM-553, Laboratory
For Computer Science, Massachusetts Institute of Technology, Cam-
bridge, MA, 1996.

Grady Booch. Software Components with Ada. Benjamin/Cummings,
Menlo Park, CA, 1987.

Grady Booch. Design of the C++4 Booch components. In
ECOOP/OOPSLA’90 Conference Proceedings, pages 1-11, New York,
NY, 1990. ACM.

Grady Booch. Object-Oriented Analysis and Design With Applications.
Benjamin/Cummings, Menlo Park, CA, 2nd edition, 1994.

Gerald Baumgartner and Vincent F. Russo. Implementing signatures
for C++4. ACM Transactions on Programming Languages and Systems,
19(1):153-187, January 1997.

B. Banner and E. Schonberg. Assessing Ada9X OOP: Building a
reusable components library. In Charles B. Engle, editor, TRI-Ada’92
Conference Proceedings, pages 79-90, Orlando, Florida, 1992.

Timothy Budd. An Introduction To Object-Oriented Programming.
Addison-Wesley, Reading, MA, 1991.

Martin D. Carroll and Margaret A. Ellis. Designing And Coding
Reusable C++. Addison-Wesley, Reading, MA, 1995.

Robert G. Clark. Type safety and behavioral inheritance. Information
and Software Technology, 37(10):539-545, 1995.

159

((Y l.q”:

i(.n.\‘QC:

(\\\—)

:I')(‘;)Qf";:

DLG

Fdwon’

Fdwn3)

Edwny

Edwot

EHMO0T

FHOOY

:IfnrlTT:

160

William R. Cook. Inheritance is not subtvping. In Proceedings of the
ACM Conference on Principles of Programming Languages (POPL90).
pages 125 135 ACNI Press. 1990.

Brad 1. Cox. Object-Oriented Programming. Addison-Weslev. Readine.
MAL 1986,

Luca Cardelli and Peter Wegner. On understanding tvpes. data ab-
straction. and polvmorphism. ACM Computing Surveys. 17(-1):471

522, 1985,

Department of Defense. Ada Joint Program Office. Referenee Manual

for-the Ada Programming Language. ANSI/MIL-STD-18154. 1983.

Krishna Kishore Dhara and Gary T. Leavens. Forcing hehavioral sub-
tvping throngh specification inheritance. In Proceedings of the 18th In-
ternational Confercnee on Software Engineering. pages 258 267, IEEE
Computer Society Press. March 1996.

Stephen Ho Edwards. An approach for constructing reusable software
components in Ada. IDA Paper P-2378. Institute for Defense Analvses.
Alexandria. VAL September 1990,

Stephen H. Edwards. Inheritance: One mechanism. many conflicting
uses. In Larry Latour, editor. Procecdings of the Sirth Annual Work-
shop on Software Reuse. November 1993,

Stephen Hilary Edwards. A Formal Model of Software Subsystems.
PLD thesis. The Department of Compnter and Information Science.
The Ohio State University, Columbus. Ohio. 1995.

Stephen Ho Edwards. Representation inheritance: A safe form of =white
box™ code inheritance. In The Fourth International Conference on
Software Rewse IEEE Computer Society Press. April 1996.

George Wo Ernst. Ravmond 1. Hookwav, James A, Menegav, and
William F. Ogden. Modular verification of Ada generies. Computer
Longuages. 16(3/.4):259 280. 1991,

George W. Ernst. Ravmond J. Hookway. and William F. Ogden. Mod-
ular verification of data abstractions with shared realizations. [EEE
Transactions on Software Engincering, 20(4):288 307, 1991,

Herbert B Enderton. Elements of Set Theory. Academic Press. Ine..
San Diego. California. 1977.

[Fal95)]

(GHO3]

[GHIV93)

[GHWS5]

[Gog84]

[Gog86]

[Har82]

[Har90]

[Hey95]

[HLOW94]

[Hoa72]

[Hol92]

[Hol97]

Ed Falis. RESOLVE/Ada 95 Mappings (Draft). Unpublished draft,
May 1995.

John V. Guttag and James J. Horning. Larch Languages and Tools for
Formal Specification. Springer-Verlag, 1993.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns. Addison-Wesley, Reading, Massachusetts, 1995.

John V. Guttag, James J. Horning, and Jeannette M. Wing. Larch fam-
ily of specification languages. IEEE Software, 2(5):24-36, September
1985.

Joseph A. Goguen. Parameterized programming. IEEE Transactions
on Software Engineering, 10(5):528-543, September 1984.

Joseph A. Goguen. Reusing and interconnecting software components.
IEEE Computer, 18(2):16-28, February 1986.

Samuel P. Harbison. Modula-3. Prentice Hall, Englewood Cliffs, New
Jersey, 1982.

Douglas E. Harms. The Influence of Software Reuse on Programming
Language Design. PhD thesis, Dept. of Computer and Information
Science, The Ohio State University, Columbus, OH, 1990.

Wayne D. Heym. Computer Program Verification: Improvements For
Human Reasoning. PhD thesis, Dept. of Computer and Information
Science, The Ohio State University, Columbus, OH, 1995.

Wayne D. Heym, Timothy J. Long, William F. Ogden, and Bruce W.
Weide. Mathematical foundations and notation of RESOLVE. Tech-
nical Report OSU-CISRC-8/94-TR45, The Ohio State University,
Columbus, OH, August 1994.

C. A. R. Hoare. Proof of correctness of data representations. Acta
Informatica, 1:271-781, 1972.

Joseph E. Hollingsworth. Software Component Design-for-Reuse: A
Language-Independent Discipline Applied to Ada. PhD thesis, The De-
partment of Computer and Information Science, The Ohio State Uni-
versity, Columbus, Ohio, 1992.

Joseph E. Hollingsworth. Rethinking our answers to fundamental en-
gineering dilemmas. In Larry Latour, editor, Proceedings of the Eighth
Annual Workshop on Software Reuse, 1997.

161

WO

Int95a’

:]I]IQ—)}{

:.]mlm):

Kem95

Kross

LBROG

LBSBS0

LCD 91

LDGAOY

LGS6G

TAHKBOST

162

Douglas E. Harms and Bruce W. Weide. Copving and swapping: In-
flnences on the design of reusable software components. JEEE Trans-
actions on Software Engineering. 17(5):4214 435, Mav 1991,

Intermetrics, Inc.. Concord. Massachusetts. Ada 95 Rationale. January
1995,

Intermetries. Inec. Ada
865.2:1995. January 1995,

95 Referenee Manual. ANSI/ISO/IEC-

CHITB. Jones. Systematic Software Development Using VDM, Prentice
Hall International (UK) Ltd. Hertfordshire. England. 2nd edition. 1990.

Magnns Kempe. The composition of abstractions: Evolution of soft-
ware component design with Ada 95, In TRI-Ada 95 Conference Pro-
ceedings. pages 391 105, New York. NY. 1995, AC)M.

Joan Krone. The Role of Verification in Software Rewsability. PhD
thesis. The Department of Computer and Information Science. The
Ohio State University, Columbus. Ohio. 1988,

Konstantin Lanfer, Gerald Banmgartner. and Vincent F. Russo. Safe
structural conformance for java. Technical Report CSD-TR-96-077.
Purdne University, West Lafavette. IN. 1996.

B. P. Lientz. P. Bennet. E. B. Swanson. and E. Burton.
Maitcnance Management. Addison-Weslev, Reading. 1980.

Software

Barbara Liskov. Dorthy Curtis. Mark Day. Sanjay Ghemawhat. Robert
Gruber. Paul Johnson. and Andrew C. Mevers. Theta Reference Man-
wal (Prcliminary Version). NIT Laboratory for Computer Science,

Cambridee. Massachnsetts, February 1991,

Barbara Liskov. Mark Day. Robert Gruper. and Andrew (. NMevers.
Subtypes vso where clanses: Constraining parametric polvmorphism.
In OOPSLA 95 pages 156 168, Anstin, TN, 1995.

Barbara Liskov and John Guttag. Abstraction and Specification in
Program Development. The MIT Electrical Engincering and Computer
Sceience Series. NTIT Press. Cambridge. M. 1986.

D. Luckham. F. W,
ANNA A Language for Annotating Ada Programs. Springer-Verlag.
New York., NY., 1987,

von Henke. B. Krieg-Briickner. and O. Owe.

[LW90]

[LW04]

[McI76]

[Mey86]

[Mey87]

[Mey88|

[Mev94]

[Mey96]

[MW90]

[OW97]

[Par72]

[Pre97]

[RW92]

Gary Leavens and W. Weihl. Reasoning about object-oriented pro-
grams that use subtypes. In FCOOP/OOPSLA’90 Conference Pro-
ceedings, pages 212-223, New York, NY, 1990. ACM.

Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of sub-

tvping. ACM Transactions on Programming Languages and Systems,
16:1811-1841, November 1994.

M. D. Mcllroy. Mass-produced software components. In J. M. Buxton,
P. Naur, and B. Randell, editors, Software FEngineering Concepts and
Techniques, pages 88-98. Petrocelli/Charter, 1976.

Bertrand Meyer. Genericity versus inheritance. In OOPSLA’86 Pro-
ceedings, pages 391-405, New York, NY, 1986. ACM Press.

Bertrand Meyer. Reusability: The case for object-oriented design.
IEEFE Software, pages 201-215, March 1987.

Bertrand Mever. Object-Oriented Software Construction. Prentice Hall,
New York, NY, 1988.

Bertrand Meyer. Reusable Software: The Base Object-Oriented Com-
ponent Libraries. Prentice Hall International, Hertfordshire, UK, 1994.

Bertrand Meyer. The many faces of inheritance: A taxonomy of tax-
onomy. IEEE Computer, 29(5):105-108, May 1996.

S. Muralidharan and Bruce W. Weide. Should data abstraction be
violated to enhance software reuse? In Proceedings of the 8th Annual
National Conference on Ada Technology, pages 515-524, Atlanta, GA,
March 1990. ANCOST, Inc.

Martin Odersky and Philip Wadler. Pizza into java: Translating theory
into practice. In Proceedings POPL 97, pages 146-159, Paris, January
15-17 1997.

David L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053-1058, December
1972. :

Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, New York, NY, 4th edition, 1997.

Martin Reiser and Niklaus Wirth. Programming In Oberon: Steps Be-
yond Pascal And Modula. Addison-Wesley, Reading, MA, 1992.

163

:Sr‘if) I

:Sf-l*.ﬂ:

:SG.().'):

:H]le:

Sit02

SNCTL

Snyvs6

SOMOT

S1r03’

SWor

SWHOS

161

Ed Seidewitz, Generieity versus inheritance reconsidered: Self-reference
using generies. In OOPSLA 9] Proceedings. pages 153 163, New York.
NYL 1991 ACN Press.

Richard W. Selby. Quantitative studies of software rense. In Ted J.
Bigeerstaff and Alan J. Perlis. editors. Software Reusability, Volume I1:
Applications and Erperience. pages 213 233, ACN Press. New York.
NY. 1989,

Ravmie Stata and John V. Guttag. Modular reasoning in the presence
of subclassing. In QOPSLA 95 Conference Proceedings. pages 200 214,
New York, NY. 1995, AC\]L

Mary Shaw. ALPHARD: Form and Content. Springer-Verlag, New
York. NY. 1981,

Murah Sitaraman. Performance-parameterized reusable software com-
ponents. International Journal of Software Engincering and Knowledge
Engincering. 2(4):567 587, December 1992,

q Y)

WP Stevens, GoJ Mevers and L. L. Constantine. Structured design.
IBM Systems Journal. 13(2):115 139, 1974,

Alan Snyder. Encapsulation and inheritance in object-oriented pro-
gramming languages. In QOOPSLA 86 Confercnce Proceedings. pages
3R 45, New York., NY. 198G, ACN.

Clemens Szyperskic Stephen Omohundro. and Stephan Murer. Engi-
neering a programming language: The tvpe and class system of sather.
In Jirg Gutknecht. editor. Programming Languages and System Ar-
chitectures, volume 782 of Lecture Notes in Computer Scicnce. pages
208 227, Springer Verlag, NMarch 1991

Bjarne Stronstrap. The C++ Programming Language. Addison-Wesley,
Reading, MAL 2nd edition. 1993,

Murali Sitaraman and Bruee W, Weide, editors. Special feature:
Component-based software using RESOILNE. ACA SIGSOFT Soft-
ware Fugineering Notes, 19(:1):21 67, 1991,

Murali Sitaraman. Lonnie R. Welch. and Douglas E. Harms. On spec-
ification of rensable software components. International Journal of
Software Engineering and Knowledge Engincering. 3(2):207 229, 1993.

[SWO97]

[Tai96]
[Tra95]
[U1195]

[WEH*96]
[Wei97]
[Wel95]

[WH92]

[WHH94|

[Win90]
[Wirs2]

[WOZ91]

Murali Sitaraman, Bruce W. Weide, and William F. Ogden. On the
practical need for abstraction relations to verify abstract data type rep-
resentations. IEEE Transactions on Software Engineering, 23(3):157-
170, March 1997.

Antero Taivalsaari. On the notion of inheritance. ACM Computing
Surveys, 28(3):438-479, September 1996.

Will Tracz. Confessions of a Used Program Salesman: Institutionaliz-
ing Software Reuse. Addison-Wesley, Reading, MA, 1995.

Jeffrey D. Ullman. Elements of ML Programming. Prentice Hall, En-
glewood Cliffs, NJ, 1995.

Bruce W. Weide, Stephen H. Edwards, Wayne D. Heym, Timothy J.
Long, and William F. Ogden. Characterizing observability and con-
trollability of software components. In The Fourth International Con-
ference on Software Reuse. IEEE Computer Society Press, April 1996.

Bruce W. Weide. Software component engineering. Unpublished Draft,
1997.

David Weller. The Ada 95 Booch components. In TRI-Ada’95 Confer-
ence Tutorial Proceedings, pages 175-223, New York, NY, 1995. ACM.
(See http://www.ocsystems.com/booch/ for code.).

Bruce W. Weide and Joseph E. Hollingsworth. Scalability of reuse
technology to large systems requir~s local certifiability. In Larry Latour,
editor, Proceedings of the Fifth Annual Workshop on Software Reuse,
October 1992.

Bruce W. Weide, Wayne D. Heym, and Joseph E. Hollingsworth. Re-
verse engineering of legacy code is intractable. Technical Report OSU-
CISRC-10/94-TR55, The Ohio State University, Columbus, OH, 1994.

Jeannette M. Wing. A specifier’s introduction to formal methods. IEFEE
Computer, 23(9):8-24, September 1990.

Niklaus Wirth. Progfammmg in Modula-2. Springer-Verlag, New York,
NY, 1982.

Bruce W. Weide, William F. Ogden, and Stuart H. Zweben. Reusable
software components. In M. C. Yovits, editor, Advances in Computers,
volume 33, pages 1-65. Academic Press, 1991.

165

ZEAWHOS

Stuart H. Zweben, Stephen H. Edwards. Bruce W, Weide. and
Joseph E. Hollingsworth. The effects of layering and encapsulation on
software developement cost and quality. IEEE Transactions on Sof-
waore Engineering. 21(3):200 208, 1995,

